Awareness of Nurses to Radiation Protection in Medicine

Osward Bwanga 1, Raphael Musoko Kayembe 2

1 Department of Radiology, Midland Regional Hospital at Tullamore, Co. Offaly, Ireland
2 Department of Radiology, Blackrock Clinic, Dublin, Ireland

Corresponding Author: Osward Bwanga, Department of Radiology, Midland Regional Hospital at Tullamore, Co. Offaly, Ireland. Email: o.bwanga@yahoo.com

Received May 18, 2020; Accepted May 28, 2020; Online Published September 07, 2020

Abstract

Background: Nurses are vital in the management of patients for diagnostic imaging examinations. Some nurses work in radiology departments and others assist radiographers during mobile and theatre radiography. In recent years, some nurses working in the United Kingdom (UK) and Ireland are referring patients for radiological examinations, a role which was traditionally that of medical doctors. This work involves ionising radiation which is harmful to the human body. Therefore, it is essential that nurses understand the measures needed to protect patients, members of the public and themselves from ionising radiation. The aim of this study was to systematically review the awareness of nurses to radiation protection in medicine.

Method: This systematic review was conducted using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search was conducted in January 2020 in three databases: ScienceDirect, PubMed/MEDLINE and Cumulative Index to Nursing and Allied Health Literature (CINAHL), as well as hand searching of journals and internet. Data were extracted from all included research studies and analysed thematically.

Results: Ten primary research studies were identified, selected and included in this systematic review. Six themes were identified following data synthesis and analysis: sources of ionising radiation, benefits of ionising radiation in medicine, biological effects of ionising radiation to the human body, principles of radiation protection, control measures for external radiation exposure, populations most vulnerable to ionising radiation, and education and training in radiation protection. In general, this review found that nurses are not adequately aware of radiation protection.

Conclusion: There is a need to integrate radiation protection into the nursing curriculum and to provide Continuing Professional Development (CPD) to nurses.

Keywords: Awareness, Nurse, Radiation, Radiation Protection
radiation. Their understanding of these three principles will help nurses provide quality patient care and protect themselves from the harmful effects of ionising radiation.

Several research studies have been conducted on this subject globally. The aim of this study is to systematically review awareness of nurses to radiation protection in medicine by bringing the findings of these primary research studies together. The review findings have provided information on where to base the development of a radiation protection curriculum and awareness programmes for nurses.

Method

Literature Search Strategy

This systematic review was conducted using PRISMA guidelines. A literature search was conducted in January 2020 by both reviewers to identify research studies on the awareness of nurses to radiation protection. This involved a three-stage search strategy: electronic database search, manual search in professional journals and cited references search. Firstly, an electronic search was performed in three databases: PubMed/MEDLINE, CINAHL and ScienceDirect, using the keywords “nurses”, “radiation protection”, “awareness”, and “knowledge”. These are the main databases for nurse literature. Secondly, hand searches of nursing and radiography journals, and the internet (Google) were carried out to supplement the electronic database searches. The journals searched included Journal of Radiology Nursing, Open Journal of Nursing, and Radiography Journal of the UK. Thirdly, manual searching of bibliographies of identified primary research studies was also conducted to avoid missing any relevant articles on this subject.

Inclusion and Exclusion Criteria

This systematic review included primary research studies that investigated the knowledge or awareness of nurses regarding radiation protection. These were limited to primary studies written in the English language and published between January 2005 and January 2020. There were no location restrictions; all research conducted globally was included in this review. Expert opinions, reviews and research conducted on other health professionals were excluded for this review.

Data Extraction and Synthesis

Both reviewers extracted data from all the included research studies and any differences were solved by mutual agreement. Data extracted included the author(s), year of publication, title of the study, main findings and the country where the study was conducted (Table 1). Data was analysed thematically by the lead reviewer and the second reviewer performed a peer-debriefing to review the emerged themes.

Results

The initial literature search provided a total of 666 articles (659 from databases and seven from other sources). After removing four duplicates and applying the inclusion criteria to the titles, abstracts and full texts, ten primary research studies remained and were included in this review. The literature search strategy is shown in Figure 1.

![Figure1. PRISMA flow chart showing literature search strategy](image-url)
The ten research studies included in this systematic review were conducted in Finland (N = 1), Australia (N = 1), Saudi Arabia (N = 1), Iran (N = 1), South Africa (N = 1), Malawi (N = 1), Kuwait (N = 1), Ghana (N = 1), and Nigeria (N = 2). The rest of the characteristics of the included research studies are summarised in Table 1.

Following data synthesis and analysis, six themes emerged: sources of ionising radiation, benefits of ionising radiation in medicine, biological effects of ionising radiation to the human body, principles of radiation protection, control measures for external radiation exposure, populations most vulnerable to ionising radiation, and education and training in radiation protection.

Table 1. Characteristics of included research studies in this systematic review (N = 10)

<table>
<thead>
<tr>
<th>No</th>
<th>Author</th>
<th>Year</th>
<th>Title</th>
<th>Main findings</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alotaibi and Saeed</td>
<td>2006</td>
<td>Radiology nurses’ awareness of radiation</td>
<td>Most nurses were not aware of radiation risks and the most important aspect of radiation protection.</td>
<td>Kuwait</td>
</tr>
<tr>
<td>2</td>
<td>Maliro</td>
<td>2011</td>
<td>Ionising radiation protection awareness among nurses working at Queen Elizabeth Central Hospital of Malawi</td>
<td>There was a general lack of knowledge about the main sources of ionising radiation, possible radiation hazards, ionising radiation protection methods, and the meaning of the ALARA concept.</td>
<td>Malawi</td>
</tr>
<tr>
<td>3</td>
<td>Anim-Sampong et al.</td>
<td>2015</td>
<td>Nurses knowledge of ionising radiation and radiation protection during mobile radiodiagnostic examinations</td>
<td>25.6% and 37.2% of nurses were of the view that objects in the X-ray room and patients emit radiation after an X-ray exposure respectively. Most (60.5%) nurses believed that MRI procedures are a source of ionising radiation.</td>
<td>Ghana</td>
</tr>
<tr>
<td>4</td>
<td>Badawy et al.</td>
<td>2016</td>
<td>An assessment of nursing staffs’ knowledge of radiation protection and practice</td>
<td>The average score on the nurses’ knowledge of radiation protection was 40%, and 85% of nurses believed that there is a need for radiation safety training.</td>
<td>Australia</td>
</tr>
<tr>
<td>5</td>
<td>Luntsi et al.</td>
<td>2016</td>
<td>Assessment of knowledge and attitudes of nurses towards ionising radiation during theatre and ward radiography</td>
<td>Nurses had good knowledge of ionising radiation and about 60.4% knew the sources, benefits and the potential harm of ionising radiation.</td>
<td>Nigeria</td>
</tr>
<tr>
<td>6</td>
<td>Paulinus et al.</td>
<td>2016</td>
<td>Evaluation of nurses’ knowledge of radiation protection practice: A case study of two hospitals in Calabar, Nigeria</td>
<td>50% of nurses had adequate knowledge of benefits of radiation in medicine, 35.5% identified the need to use a lead apron for protection, 40.5% knew time, distance and shielding as protective measures and 90% had no knowledge on regulations covering this area, with poor attendance on radiation protection training.</td>
<td>Nigeria</td>
</tr>
<tr>
<td>7</td>
<td>Alzubaidi et al.</td>
<td>2017</td>
<td>Assessment of knowledge and attitude of nurses towards ionising radiation during radiography in Jeddah city</td>
<td>Most (65%) nurses had adequate knowledge regarding the ionising radiation risk factors and protective measures.</td>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>8</td>
<td>Azimi et al.</td>
<td>2018</td>
<td>Individual protection adopted by ICU nurses against radiation and its related factors</td>
<td>The majority (97.9%) of nurses had not attended any radiation protection training. More than half (62.7%) had poor knowledge of personal protection against radiation.</td>
<td>Iran</td>
</tr>
<tr>
<td>9</td>
<td>Hirvonen et al.</td>
<td>2019</td>
<td>Nurses’ knowledge of radiation protection: A cross-sectional study</td>
<td>Nurses had high knowledge levels in radiation protection, but low in radiation physics, biology and principles of radiation use. Nurses who had not received radiation education scored lower than those who had received education in radiation safety.</td>
<td>Finland</td>
</tr>
<tr>
<td>10</td>
<td>Thambura et al.</td>
<td>2019</td>
<td>Nurses’ knowledge of ionising radiation in Northern Gauteng State Hospitals in South Africa</td>
<td>50% of nurses lacked basic knowledge on the principles of radiation safety, and more than half (63%) of nurses did not receive radiation safety training</td>
<td>South Africa</td>
</tr>
</tbody>
</table>

Discussion
Sources of Ionising Radiation

Two research studies examined the knowledge of nurses regarding the sources of ionising radiation. In a research study by Maliro, the majority (54%), of nurses were unfamiliar with the sources of ionising radiation. Daily, people are exposed to natural and man-made radiation sources. Natural background radiation comes from many sources, including more than 60 naturally occurring radioactive materials found in the soil, water and air. Humans have less control over natural radiation. In addition to the natural sources of background radiation, many man-made sources of radiation have been introduced since the discovery of X-radiation and radioactivity at the end of the nineteenth century. The use of radiation in medicine contributes to over 95% of man-made radiation exposure.

In radiography, X-radiation is only emitted during the exposure. However, less than half (25.6%) and (37.2%) respectively, of nurses in a research study by Anim-Sampong et al. believed that objects in the X-ray room and patients do emit radiation after X-ray exposure. In the same study, the majority (60.5%), of nurses wrongly believed that MRI modality uses ionising radiation. As discussed earlier in the introduction, MRI and US are the only two imaging modalities which use non-ionising radiation: using magnetic
fields and sound waves respectively. Humans have control over artificial sources of radiation by applying control measures.1,2 In general, this review found that nurses are poorly informed on the sources of ionising radiation.

Benefits of Ionising Radiation in Medicine

Two research studies assessed the knowledge of nurses on the benefits of radiation in medicine. In a research study by Paulinus et al.,2 a quarter (24%), of the nurses knew the use of radiation for diagnosis and treatment. In a similar research conducted by Maliro,11 about 60% and 29.9% of nurses respectively knew the diagnostic and therapeutic uses of radiation. Since the discovery of X-radiation in 1895, ionising radiation has been used in many branches of medicine, as both an aid to diagnosis and as a means of therapy.2 The main therapeutic application of radiation is in the treatment of cancer.4 Although radiation can induce cancer, in some cases it can be used to treat the disease. This is because cells that are dividing rapidly are particularly sensitive to radiation and, as cancers are groups of cells dividing in an uncontrolled manner, it follows that they are often more sensitive to radiation than normal cells.2 In general, this review found that nurses are more aware of the diagnostic than therapeutic uses of ionising radiation.

Biological Effects of Ionising Radiation

The biological effects of ionising radiation became apparent very soon after the discovery of X-radiation.2 However, in research studies by Anim-Sampong et al.,12 and Luntsi et al.,14 about 91% and 16.5%, of nurses respectively, indicated that ionising radiation is not harmful to the human body. This unawareness amongst some nurses is a concern regarding radiation protection. The biological effects of ionising radiation is divided into deterministic and stochastic effects.3,8,20,21 The International Commission on Radiation Protection (ICRP)9 describes the deterministic effects as those which occur due to the killing of large parts or the malfunction of cells following high radiation doses. As a result, the cell deaths cannot be compensated by increased natural cellular proliferation. In a study by Alzubaidi et al.,16 most of the nurses had adequate awareness of the clinical symptoms of deterministic effects: acute radiation sickness (53%), skin erythema (64.3%), eye cataracts (55.3%), and infertility (59.7%). However, in a study by Paulinus et al.,13 only 16.5%, of the nurses knew the clinical examples of deterministic effects: skin injuries, hair loss and sterility. On the other hand, the ICRP9 describes stochastic effects as those which originate due to the mutation of somatic cells or heritable disease in the offspring of exposed individuals owing to the mutation of reproductive cells. In a research by Alotaibi and Saeed,10 the majority (83%) of nurses knew cancer to be one clinical example of stochastic effects. However, a limited number of the nurses (16.5% and 21%) knew cancer to be a stochastic effect in the studies done by Paulinus et al.,15 and Maliro,11 respectively. Cancer which is caused by radiation is referred to as radiation-induced cancer. In general, this review found that most nurses are aware of the clinical examples of deterministic and stochastic effects of radiation.

Principles of Radiation Protection in Medicine

There are three important principles which form the foundation of radiation protection: justification, optimisation, and dose limitations.3,4 In this review, three studies10,11 investigated nurses' knowledge of the principles of justification and dose optimisation. These two principles apply to patients undergoing radiological examinations, while the dose limitation is applicable to health professionals, such as radiographers, radiologists, and radiology nurses as well as members of the public. One study by Paulinus et al.,13 evaluated nurses' knowledge of the justification principle of radiation protection. In this study, only a quarter (26.5%) of nurses were aware that radiation is harmful to the human body and should only be used if it is beneficial to the patient. Nurses with the responsibility of referring patients for radiological examinations should understand and adhere to this principle. Worryingly, it is estimated that up to 30% of radiological examinations may not be justified.4 According to the College of Radiologists,22 the common causes of unjustified or unnecessary medical exposures include poor knowledge of radiation doses, wrong investigations and over investigating, repeating investigations which have already been done and even extremely early investigations.

Two studies examined the knowledge of nurses on the optimisation principle of radiation protection. In studies done by Alotaibi and Saeed,10 and Maliro,11 only a few (12% and 11.8%) of the nurses respectively, were familiar with the principle of optimisation. All medical exposures should be shown to be optimised.3,4 This means that for radiological examinations, the level of exposure should be as low as reasonably practicable (ALARP). Optimising medical exposure is mostly the responsibility of imaging professionals, such as radiographers and radiologists. Nurses accompanying patients to the radiology department and those involved in mobile radiography should work together with radiographers in positioning, immobilising and giving instruction to patients for quality images to avoid repeats, which can further expose patients to unnecessary radiation.

In this review, there was no study which had evaluated the knowledge of nurses on the third principle of dose limitation. The total radiation dose to any individual from regulated sources in planned exposure situations, other than medical exposure of patients, should not exceed the appropriate limits specified by the ICRP (Table 2).
The principle of dose optimisation does not apply to patients undergoing radiological examination. To patients the focus is on justifying and optimising medical exposures.

Table 2. Recommended occupational dose limits

<table>
<thead>
<tr>
<th>Type of limit</th>
<th>Dose limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective dose</td>
<td>20 mSv per year, averaged over 5 years</td>
</tr>
<tr>
<td>Annual equivalent dose</td>
<td></td>
</tr>
<tr>
<td>Lens of the eye</td>
<td>150 mSv</td>
</tr>
<tr>
<td>Skin</td>
<td>500 mSv</td>
</tr>
<tr>
<td>Hands and feet</td>
<td>500 mSv</td>
</tr>
</tbody>
</table>

Control Methods for External Radiation in Medicine

The external ionising radiation exposure arises from sources of radiation outside the body, such as X-ray machines. There are three practical methods of controlling the external ionising radiation exposure: time, distance and shielding.\(^2\,^7\,^8\) For nurses working in hospital wards, Special Care Units (SCU), Accident and Emergency (A&E) departments and operating theatres, these three control measures are important during mobile radiography and fluoroscopic intraoperative imaging. But it is not always possible to apply all three methods at the same time.

In research studies performed by Anim-Sampong et al.,\(^12\) and Paulinus et al.,\(^15\) more than half (59.5% and 60.5%) of the nurses respectively, were unfamiliar with the basic radiation protection measure of time factor. Interestingly, in a research study by Alotaibi and Saeed,\(^19\) about 38% of nurses were unfamiliar with the time factor. The dose from a radiation source is directly proportional to the amount of time an individual is exposed to ionising radiation.\(^2\,^3\,^7\) In theatre radiography, this means that the longer the fluoroscopy time, the more radiation exposure to the patient and theatre staff. The application of the time factor in theatre radiography is achieved by ensuring the rotation of staff members between cases for everyone to have less exposure time.

In this review, four studies assessed the knowledge of nurses regarding the radiation-safe distance. In the research study by Azimi et al.,\(^17\) and Luntsi et al.,\(^14\) a few (15% and 24.5%) of nurses respectively, were unfamiliar with the principle of reducing exposure by increasing the distance from the radiation source. Most of the nurses (60.5% and 81%), were also not knowledgeable about this principle in the research studies by Anim-Sampong et al.,\(^12\) and Thambura et al.,\(^19\) respectively. The amount of radiation exposure one receives is inversely related to the distance one is from the source, such as the X-ray machine.\(^5\,^2\,^3\) This is called the inverse square law. In mobile and theatre radiography, staff members can reduce exposure from radiation by keeping as far back from the X-ray machine as is practicable.\(^2\,^7\,^8\)

Five studies assessed nurses on the principle of shielding. Protection with shielding is provided by fixed protective barriers or personal protective clothing. In the studies conducted by Anim-Sampong et al.,\(^12\) and Paulinus et al.,\(^15\) most (60.5% and 59.5%) of the nurses, respectively were unfamiliar with the third method of controlling external radiation exposure by means of shielding. However, in the study by Alotaibi and Saeed,\(^19\) a majority (69%), of nurses were familiar with this principle. The amount of exposure decreased by shielding varies according to the energy of the X-radiation and the thickness of the shield.\(^7\) The four main types of personal protective clothing available in radiation protection include the lead aprons, thyroid shields, lead gloves and lead glasses. These, when worn, decreases radiation exposure to body organs. In a study conducted by Luntsi et al.,\(^14\) the majority (84.5%) of nurses were aware of the use of lead aprons to minimise external radiation exposure. However, in another similar research study by Alzubaidi et al.,\(^10\) most nurses were unfamiliar with the use of lead gloves (54%) and thyroid shields (58%) as radiation personal protective clothing. It should be mentioned that specific personal protective clothing should always be worn by an individual when remaining in a radiation field if they cannot stand behind a lead protective screen. Lead is used in shielding because its properties and thickness are capable of absorbing ionising radiation.\(^8\) Shielding by wearing a lead apron is necessary during mobile/theatre radiography or when staff need to support a patient during exposure.

Population most vulnerable to ionising radiation

One research study assessed the knowledge of nurses on the most vulnerable population group to ionising radiation. In a research by Alotaibi and Saeed,\(^19\) the majority (83%) of nurses were unfamiliar with the 10-day pregnancy rule and less than half (35%) identified the foetus as the most sensitive to ionising radiation. Globally, radiation protection regulations prohibit the carrying out a medical exposure involving the pelvic area of a female of child-bearing age without an enquiry as to whether the patient could be pregnant.\(^2\,^3\) The 10-day pregnancy rule states that whenever possible, radiological examinations of the pelvis may only be performed in the first 10 days of the menstrual cycle. This is because conception can take place between 12 to 14 days of the menstrual cycle.\(^1\,^4\) This measure is in place to protect the foetus from harmful exposure to ionising radiation.

The biological effect of ionising radiation on the human body depends on the age of the individual and the radiosensitivity of the tissue exposed.\(^8\) Foetuses, infants and children are more vulnerable to ionising radiation than adults due to a higher sensitivity of the developing organs and tissue.\(^2\) In addition, this group has a longer lifespan in which to develop and manifest
long-term radiation induced health effects, such as cancer. This means that the development of cancers from X-ray exposure in infants and children is significantly higher than in adults. Thus, more attention should be given to female patients of childbearing age and pediatric patients in the justification of exposure and in keeping the level of exposure as low as reasonably practical.

Education and Training in Radiation Protection

All included research in this review recommended the training of nurses in radiation protection. A study conducted by Hirvonen et al., revealed that in Finland, nurses working in clinical environments where radiation is used undergo training before taking up the role. The same study further revealed that 65% of nurses had completed radiation protection training and were more knowledgeable than those who did not receive training. The knowledge levels of nurses in this review was below average and most nurses suggested the need for training in radiation safety. The suggestions included the integration of radiation protection into the nursing curriculum and the undertaking of CPD learning activities to keep up to date with any developments in this area. This agrees with the ICRP recommendation which state that all health professionals utilising radiation should study radiation protection as part of their curriculum.

Conclusion

This systematic review found that nurses are essential in the management of patients undergoing radiological examinations. However, there is a general lack of awareness amongst nurses about radiation protection used in radiological examinations. There is a need to integrate radiation protection in the nursing curriculum. Furthermore, imaging professionals, such as radiographers and radiologists should set up radiation awareness programmes for non-radiology staff. The acquiring of knowledge by nurses through education would lead to a change in attitude and adherence to radiation protection control measures. This is because there is a linear relationship between knowledge, attitudes and practices.

Ethical Approval

There was no ethical approval required because the review used public accessible data.

Acknowledgment

The authors would like to thank Gabriel Mwase for his help in reviewing this article before submitting it for publication.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Funding

None.

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

11. Maliro JFM. Ionizing radiation protection awareness among nurses working at Queen Elizabeth Central Hospital of Malawi. MTech Radiography Dissertation: University of Johannesburg; 2011.

International Journal of Medical Reviews. 2020;7(3):78-84

