Removal of Dye by Biological Methods Using Fungi

Document Type: Narrative Review

Author

Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran

Abstract

Synthetic dyes are increasingly used in industries such as medicine, pharmaceuticals, textiles, paper, cosmetics, leather, photography, food, etc. These compounds have severe environmental effects; most are toxic, mutagenic, and carcinogenic. In addition, they are usually resistant to degradation, and decolorizing them by physical or chemical methods, such as surface absorption, sedimentation, chemical analysis, light analysis, etc., requires substantial amounts of money, time, and energy. At the moment, the attention of most researchers in this field is focused on microorganisms with the ability to remove dyes from color materials. Innovative processes for the treatment of industrial wastewater which contains heavy metals and dyes are often used to reduce environmental pollution and the toxicity of these pollutants to cause the wastewater to meet purification standards. Research has shown that microorganisms such as bacteria, fungi, and yeasts can play an important role in decolorizing wastewater. The purpose of this paper is to review the causes of contamination and the role of fungi in decolorizing industrial wastewater.

Keywords


  1. Qu B, Zhou J, Xiang X, Zheng C, Zhao H, Zhou X. Adsorption behavior of azo dye C. I. acid red 14 in aqueous solution on surface soils. J Environ Sci (China). 2008;20(6):704-9. pmid: 18763565.
  2. Qani Zadeh G, Asgari G. [Methylene blue dye removal from wastewater using bone ash]. J Hamedan Univ Med Sci. 2009;2(2):104-13.
  3. Chatha SAS, Asgher M, Ali S, Hussain AI. Biological color stripping: A novel technology for removal of dye from cellulose fibers. Carbohydrate Polymers. 2012;87(2):1476-81. doi: 10.1016/j.carbp ol.2011.09.041.
  4. Roys N. Optimal investment policy with fixed adjustment costs and complete irreversibility. Econom Let. 2014;124(3):416-9. doi: 10.1016/j.econ let.2014.06.026.
  5. Qian J, Lu H, Cui Y, Wei L, Liu R, Chen GH. Investigation on thiosulfate-involved organics and nitrogen removal by a sulfur cycle-based biological wastewater treatment process. Water Res. 2015;69:295-306. doi: 10.1016/j.watres.2014. 11.0 38. pmid: 25497428.
  6. Cullough MC, Hazon J. Introduction to bioremediation. USA: Department of energy NABIR grant; 2002.
  7. Bahmaei M, Rahnavard Kissomi Z, Olya M, Kasehgari H. Removal Of Labs Anionic Surfactant By Perlite And Activated Carbon. J Appl Res Chem. 2013;7(2):67-73.
  8. Pirkarami A, Olya ME, Najafi F. Removal of azo dye from aqueous solution using an anionic polymeric urethane absorbent (APUA). J Ind Eng Chem. 2015;21:387-93. doi: 10.1016/j.jiec.2014 .02.050.
  9. Çetinkaya Dönmez G, Aksu Z, Öztürk A, Kutsal T. A comparative study on heavy metal biosorption characteristics of some algae. Proc Biochem. 1999;34(9):885-92. doi: 10.1016/s0032-9592(99)00005-9.
  10. Nuhoglu Y, Malkoc E, Gurses A, Canpolat N. The removal of Cu(II) from aqueous solutions by Ulothrix zonata. Bioresour Technol. 2002;85(3):331-3. doi: 10.1016/s0960-8524(02)00098-6. pmid: 12365504.
  11. Khalaf MA. Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp. Bioresour Technol. 2008;99(14):6631-4. doi: 10.1016/j.biorte ch.2007.12.010. pmid: 18242981.
  12. Abd El-Rahim WM, El-Ardy OAM, Mohammad FHA. The effect of pH on bioremediation potential for the removal of direct violet textile dye by Aspergillus niger. Desalination. 2009;249(3):1206-11. doi: 10.1016/j.desal.2009.06 .037.
  13. Forgacs E, Cserhati T, Oros G. Removal of synthetic dyes from wastewaters: a review. Environ Int. 2004;30(7):953-71. doi: 10.1016/j.envint.2004 .02.001. pmid: 15196844.
  14. Noori S, Rahnama M. [The quality of drinking water]. Semnan: Medical university of Semnan publication; 1995.
  15. Toh Y-C, Yen JJL, Obbard JP, Ting Y-P. Decolourisation of azo dyes by white-rot fungi (WRF) isolated in Singapore. Enzyme Microb Technol. 2003;33(5):569-75. doi: 10.1016/s0141-0229(03)00 177-7.
  16. Martins MAM, Lima N, Silvestre AJD, Queiroz MJ. Comparative studies of fungal degradation of single or mixed bioaccessible reactive azo dyes. Chemosphere. 2003;52(6):967-73. doi: 10.1016/s0045-6535(03)00286-8.
  17. Crini G. Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol. 2006;97(9):1061-85. doi: 10.1016/j.bior tech.2005.05.001. pmid: 15993052.
  18. Mazaheri Tehrani M. [Decontamination of wastewater from textile factories by fungi and appropriate strain selection]. Tehran: University of Tehran; 1997.
  19. Griffin D. Spore dormancy and germination. Fungal physiology. 2nd ed. New York, NY: John Wiley & Sons; 1994. p. 375-98.
  20. Yang Q, Li C, Li H, Li Y, Yu N. Degradation of synthetic reactive azo dyes and treatment of textile wastewater by a fungi consortium reactor. Biochem Eng J. 2009;43(3):225-30. doi: 10.1016/j.bej.2008. 10.002.
  21. Jahangir M. [The effect of different factors on the growth of the marine strain to remove the color]. 4th Iranian Chemical Engineering Congress; Iran1998.
  22. Gonthier P, Nicolotti G. A field key to identify common wood decay fungal species on standing trees. Arboricult Urb Forest. 2007;33(6):410.
  23. Blanchette RA, Behrendt CD, Williams D, Iverson S, Akhtar M, Enebak SA, editors. New approach to effective biopulping: Treating logs with Phlebiopsis gigantea. Proceedings of the 1998 7th International Conference on Biotechnology in the Pulp and Paper Industry Part 1 (of 3); 1998: CPPA.
  24. Ebrahim Poor G, Homsi M. [Effect of fungal treatment on resistance properties of chemical-mechanical pulp of hornbeam wood]. Iranian Q J Sci Res Wood Paper 2012;7(1):1-15.
  25. Lawson Jr L, Still C. The biological decomposition of lignin—literature survey. Tappi J. 1957;40(9):56A-80A.
  26. Kawase K. Chemical components of wood decayed under natural condition and their properties. J Fac Agricult Hokkaido Univ. 1962;52(2):186-245.
  27. Villalba LL, Scott GM, Schroeder LR. Modification of Loblolly Pine Chips withCeriporiopsis subvermisporaPart 2: Kraft Pulping of Treated Chips. J Wood Chem Technol. 2006;26(4):349-62. doi: 10.1080/02773810601105 185.
  28. Fillat Latorre A. Flax fibre modification using enzyme systems to obtain high-value cellulose products. Catalunya: Universitat Politècnica de Catalunya; 2011.
  29. Kirk T, Koning J, Burgess R, Akhtar M, Blanchette R. Biopulping: A glimpse of the future. Forest Service research paper. Forest Service, Madison, WI: Forest Products Lab; 1993.
  30. Wolfaardt JF. Utilization of wood-decay fungi for biokraft pulping of softwood 1999.
  31. Fujita K. Biobleaching of kraft pulp using white-rot fungus IZU-154. Tappi J. 1991;74:123-7.
  32. Bajpai P, Kondo R. Biotechnology for environmental protection in the pulp and paper industry: Springer Science & Business Media; 2012.
  33. Scott GM, Swaney R. New technology for papermaking: biopulping economics. Tappi J. 1998;81(12):153-7.
  34. Akhtar M, Attridge M, Blanchette R, Myers G, Wall M, Sykes M, et al. The white-rot fungus Ceriporiopsis subvermispora saves electrical energy and improves strength properties during biomechanical pulping of wood. Biotechnol Pulp Paper Ind. 1992:3-8.
  35. Hernández M, Hernández-Coronado MJ, Pérez MI, Revilla E, Villar JC, Ball AS, et al. Biomechanical pulping of spruce wood chips with Streptomyces cyaneus CECT 3335 and handsheet characterization. Holzforschung. 2005;59(2). doi: 10.1515/hf.2005.027.
  36. Schmidt O, Czeschlik D. Wood and tree fungi. Berlin: Springer-Verlag; 2006.
  37. Malinen R, Islam M, Karim M, editors. Beneficial Effects of Fungal Treatment before Pulping and Bleaching of Acacia mangium and Eucalyptus Camaldulensis. 59th Appita Annual Conference and Exhibition; 2005; Auckland, New Zealand.
  38. Rajabi S, Afraa A. [Investigating the process of biological pulping and its performance on reducing wastewater in the stage]. 2002.
  39. Madhavi V, Lele S. Laccase: properties and applications. BioResources. 2009;4(4):1694-717.