In Silico Analysis Brucella OMPs and CagA for Expansion of a Subunit Vaccine Candidate Versus Brucellosis

Document Type : Narrative Review

Authors

1 Department of Microbiology and Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran

2 Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

3 Chemical Injuries Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran

4 Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran

Abstract

Brucellosis is one of the current zoonotic diseases, still a health hazard in many countries, and progressive research programs are necessary to control and eradicate this disease in endemic areas. Outer membrane proteins (OMPs) are capable of allocating immunity and protection antigen in mice. CagA is an immunogenic protein of Helicobacter pylori. Because OMPs are part of Brucella spp, they have been conferred as potential immunogenic and protective antigens. In this study, the gene sequence which encoding TN-OMPs was obtained from GenBank. To estimate the 3D structure of the protein, modeling, prediction of secondary and tertiary structure, immunogenicity, allergenic sites and antigenic B-cell and T-cell epitopes were performed. The conserved domain of proteins was obtained and the epitopes of TN-OMPs were capable of inducing both B-cell and T-cell mediated immune responses. CagA is a cellular immunogenic protein that induces a Th1 response. The OMPs of Brucella could be used as a suitable vaccine candidate versus brucellosis.

Keywords


  1. Siadat SD, Salmani AS, Aghasadeghi MR. Brucellosis vaccines: an overview. IntechOpen; 2012. doi:10.5772/38812.
  2. Bahador A, Esmaeili D, Mansoori N, Mahdavi M. Protection against Brucella abortus 544 Strain Infection in BALB/c Mice by Subcutaneouse Administration of Multicomponent Vaccine of rCagA Conjugated with LPS + CpG. J Pure Appl Microbiol. 2013;7(3):1809-1819.
  3. Pasquevich KA, Garcia Samartino C, Coria LM, et al. The protein moiety of Brucella abortus outer membrane protein 16 is a new bacterial pathogen-associated molecular pattern that activates dendritic cells in vivo, induces a Th1 immune response, and is a promising self-adjuvanting vaccine against systemic and oral acquired brucellosis. J Immunol. 2010;184(9):5200-5212. doi:10.4049/jimmunol.0902209.
  4. Zheng WY, Wang Y, Zhang ZC, Yan F. Immunological characteristics of outer membrane protein omp31 of goat Brucella and its monoclonal antibody. Genet Mol Res. 2015;14(4):11965-11974. doi:10.4238/2015.October.5.10.
  5. Ghasemi A, Salari MH, Zarnani AH, et al. Immune reactivity of Brucella melitensis-vaccinated rabbit serum with recombinant Omp31 and DnaK proteins. Iran J Microbiol. 2013;5(1):19-23.
  6. Basiri H, Akbari N, Azizpour M, Hosseini SD, Behrozikhah AM, Eskandari S. Amplification, cloning and expression of Brucella melitensis bp26 gene (OMP28) isolated from Markazi province (Iran) and purification of Bp26 Protein. Arch Razi Inst. 2013;68(2):111-116. doi:10.7508/ari.2013.02.004.
  7. Yao L, Wu CX, Zheng K, et al. Immunogenic response to a recombinant pseudorabies virus carrying bp26 gene of Brucella melitensis in mice. Res Vet Sci. 2015;100:61-67. doi:10.1016/j.rvsc.2015.03.030.
  8. Cassataro J, Pasquevich K, Bruno L, Wallach JC, Fossati CA, Baldi PC. Antibody reactivity to Omp31 from Brucella melitensis in human and animal infections by smooth and rough Brucellae. Clin Diagn Lab Immunol. 2004;11(1):111-114. doi:10.1128/CDLI.11.1.111-114.2004.
  9. Vizcaino N, Cloeckaert A, Zygmunt MS, Dubray G. Cloning, nucleotide sequence, and expression of the Brucella melitensis omp31 gene coding for an immunogenic major outer membrane protein. Infect Immun. 1996;64(9):3744-3751.
  10. Ogorodnik E, Raffaniello RD. Analysis of the 3’-variable region of the cagA gene from Helicobacter pylori strains infecting patients at New York City hospitals. Microb Pathog. 2013;56:29-34. doi:10.1016/j.micpath.2012.10.003.
  11. Dorneles EM, Sriranganathan N, Lage AP. Recent advances in Brucella abortus vaccines. Vet Res. 2015;46:76. doi:10.1186/s13567-015-0199-7.
  12. Yang X, Skyberg JA, Cao L, Clapp B, Thornburg T, Pascual DW. Progress in Brucella vaccine development. Front Biol (Beijing). 2013;8(1):60-77. doi:10.1007/s11515-012-1196-0.
  13. Abkar M, Lotfi AS, Amani J, et al. Survey of Omp19 immunogenicity against Brucella abortus and Brucella melitensis: influence of nanoparticulation versus traditional immunization. Vet Res Commun. 2015;39(4):217-228. doi:10.1007/s11259-015-9645-2.
  14. Tabynov K, Sansyzbay A, Kydyrbayev Z, et al. Influenza viral vectors expressing the Brucella OMP16 or L7/L12 proteins as vaccines against B. abortus infection. Virol J. 2014;11:69. doi:10.1186/1743-422X-11-69.
  15. Cassataro J, Pasquevich KA, Estein SM, et al. A recombinant subunit vaccine based on the insertion of 27 amino acids from Omp31 to the N-terminus of BLS induced a similar degree of protection against B. ovis than Rev.1 vaccination. Vaccine. 2007;25(22):4437-4446. doi:10.1016/j.vaccine.2007.03.028.
  16. Wang W, Wu J, Qiao J, et al. Evaluation of humoral and cellular immune responses to BP26 and OMP31 epitopes in the attenuated Brucella melitensis vaccinated sheep. Vaccine. 2014;32(7):825- 833. doi:10.1016/j.vaccine.2013.12.028.
  17. Amani J, Mousavi Gargari SL, Rafati S, Salmanian AH. In silico analysis of chimeric espA, eae and tir fragments of Escherichia coli O157:H7 for oral immunogenic applications. Theor Biol Med Model. 2009;6:28. doi:10.1186/1742-4682-6-28.
  18. Amet N, Lee HF, Shen WC. Insertion of the designed helical linker led to increased expression of tf-based fusion proteins. Pharm Res. 2009;26(3):523-528. doi:10.1007/s11095-008-9767-0.
  19. Bai Y, Shen WC. Improving the oral efficacy of recombinant granulocyte colony-stimulating factor and transferrin fusion protein by spacer optimization. Pharm Res. 2006;23(9):2116- 2121. doi:10.1007/s11095-006-9059-5.
  20. Baloria U, Akhoon BA, Gupta SK, Sharma S, Verma V. In silico proteomic characterization of human epidermal growth factor receptor 2 (HER-2) for the mapping of high affinity antigenic determinants against breast cancer. Amino Acids. 2012;42(4):1349- 1360. doi:10.1007/s00726-010-0830-x.
  21. Cai H, Li Y, Zhang H, Feng F. [Effects of gene design on recombinant protein expression: a review]. Sheng Wu Gong Cheng Xue Bao. 2013;29(9):1201-1213.
  22. Klompus S, Solomon G, Gertler A. A simple novel method for the preparation of noncovalent homodimeric, biologically active human interleukin 10 in Escherichia coli-enhancing protein expression by degenerate PCR of 5’ DNA in the open reading frame. Protein Expr Purif. 2008;62(2):199-205. doi:10.1016/j.pep.2008.07.013.