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Introduction  

Numerous pneumonia cases of unknown etiology 

appeared at the end of December 2019 in Hubei's 

province in China, where the virus was identified as a 

severe respiratory syndrome, named as coronavirus-2 

(SARS-CoV-2).1,2 The World Health Organization 

(WHO) declared the infection caused by SARS-CoV-2, 

a pandemic, and named the disease COVID-19. Since 

its discovery, the new pneumonia caused by this virus 

continues to spread around the world, with a current 

count of 55,243,538 confirmed cases and 1,330,930 

deaths worldwide.3 The COVID-19 disease is transmitted 

mainly by a direct contact with the infected person 

through the droplets expelled when talking, coughing, 

or sneezing; and through contact with surfaces 

contaminated with secretions from the respiratory tract 

of infected people.4 The incubation period is 6-14 

days.5 Viral transmission from presymptomatic and 

asymptomatic individuals has promoted viral shedding 

throughout the world.6,7 Diverse clinical manifestations 

appear in the population infected by SARS-CoV-2, 

some of them include the asymptomatic carrier, the 

acute respiratory disease, and pneumonia; which present 

common signs and symptoms, such as fever, dry 

cough, headache, asthenia, myalgia, sore throat, and 

less common rhinorrhoea, diarrhea, hemoptysis, nausea, 

or vomiting, and conjunctival congestion. Anosmia 

and ageusia have been recognized as prevalent early 

symptoms in both asymptomatic and COVID-19-positive 

patients.8–11 

In early 2020, SARS-CoV-2 was identified as a member 

of the family Coronaviridae.1,2 Coronaviruses, that 

includes four genera (α, β, γ, and δ) SARS-CoV-2, 

SARS-CoV, and MERS-CoV belong to the genus β-

coronavirus and can cause acute respiratory distress 

syndrome in humans.12 SARS-CoV-2 is an enveloped 

virus with a single-stranded RNA genome, a non-segmented 
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and positive sense, a part of its genome encodes the 

spike (S), envelope (E), membrane (M), and nucleocapsid 

(N). The spike protein (S) binds to the receptor on the 

host cell membrane's surface, the membrane protein that 

participates in viral assembly and budding, and the 

nucleocapsid protein, which binds to the genome and 

participates in assembly and viral lysis.13,14 SARS-CoV-2 

and SARS-CoV enter cells through the interaction of their 

protein S with the receptor called angiotensin-converting 

enzyme (ACE2),15,16 which is highly present in the human 

body. It can be found in the oral, nasal and nasopharynx 

mucosa, lungs, stomach, small intestine, colon, skin, 

lymph nodes, thymus, bone marrow, spleen, liver, kidney, 

brain, testis, and prostate.17–19 Due to the presence of ACE2 

in male reproduction organs, SARS-CoV-2 infection 

may have an impact in male reproduction. The review 

aims to analyze the available information of the SARS-

CoV-2 infection and its potential effects on male fertility, 

and its sexual transmission. For this purpose, Pubmed, 

Science Direct and MedRxiv databases were employed 

to identify publications in this regard. 

 

Mechanism of Pathogenesis 

The pathogenesis SARS-CoV mechanism involves 

the expression of the ACE2 receptor, although SARS-

CoV2 has a 20-fold greater affinity to receptor.16 To 

get into cells, the S proteins of SARS-Cov-2 associate 

with the ACE2 receptor. Protein S is formed by two 

subunits that facilitate the viral-host cell union; the S1 

domain interacts and binds through the ACE2 receptor 

binding domain, while the S2 domain participates in 

the fusion of the virus-host cell membranes. To complete 

its entry, S2 is cleaved by the transmembrane protease 

serine 2 (TMPRSS2), contributing to receptor separation 

and subsequent membrane fusion, thus facilitating 

SAR-CoV entry SARS-CoV2 through endocytosis.14,16,20 

Also, protein S binding to ACE2 decreases its 

expression and the loss of the ACE2 expression turn 

into a severe acute respiratory failure.21 

ACE2 is a transmembrane metalloproteinase that 

shows significant homology to the classic ACE isoform. 

Both isoforms are part of the renin-angiotensin-

aldosterone system (RAAS), a critical system that regulates 

the cardiovascular system and glucose homeostasis 

among others.22,23 Renin is a proteolytic enzyme secreted 

by the kidney in response to blood pressure or sodium 

concentration. Renin cleaves angiotensinogen, generating 

angiotensinogen I.24 While ACE catalyzes angiotensin 

I to angiotensin-II, ACE2 is responsible for the generation 

of angiotensin 1-9 and 1-7 from angiotensin I and II, 

respectively.25 Meanwhile, angiotensin II acts on AT1 

receptors producing vasoconstriction, sympathetic activation, 

inflammation, oxidative stress, and insulin resistance, 

while angiotensin 1-7 provokes anti-inflammatory, 

antifibrotic, and diuretic actions through the Mas 

receptor.26,27 

 

Role of ACE and TMPRSS2 Isoforms in Testes  

The expression of various RAAS molecules has been 

identified in testes, epididymis, and spermatozoa in 

different animal and human species.25,28–35 Several studies 

have shown that ACE expression is involved in the 

processes of spermatogenesis, spermiogenesis, sperm 

capacitation, as well as in fertilization.34,36–40 ACE2 is 

also expressed in spermatogonia, Leydig cells, and Sertoli 

cells in human testes.41,42 Angiotensin 1-7 is expressed 

in Leydig cells and interstitial cells; the Mas receptor is 

expressed in tubular compartments and the seminiferous 

epithelium. Likewise, the null expression of ACE 

shows alterations in male fertility43, including the loss 

of the ability to bind to the zona pellucida of the oocyte40 

and oocyte-sperm fusion.36,44 

Interestingly, in patients with infertility due to azoospermia, 

the angiotensin 1-7 and the Mas receptor expression 

seems to significantly have decreased.30 Mas receptor 

deficiency has been shown to be involved in the 

regulation of spermatogenesis and testicular apoptosis.29 

The participation of ACE2 as a regulator of spermatogenesis 

and sperm function has been recognized.39 On the other 

hand, TMPRSS2 and ACE2 are co-expressed in prostate 

cells; in particular, the expression of TMPRSS2 in the 

epithelium of the prostate gland is dependent on androgens 

and is a component of the seminal fluid proteasome, 

whose function is associated with the protection of 

sperm. Furthermore, the expression of TMPRSS2 increases 

in prostate cancer cells in response to androgens,45,46 

and it has been suggested that the predominance of 

TMPRSS2 over testosterone contributes to the predominance 

of COVID-19 in men.47 There are no studies focused 

on evaluating infection by SARS-CoV2 and the RAAS 

system that involves the male infertility receptor 

ACE2. Furthermore, a family of transmembrane 

metalloproteases known as ADAM has an important 

role in the processes of fertilization and cellular 

communication. ADAM17 is a membrane-bound 

enzyme present in testicular germ cells and is expressed 
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during spermatogenesis and induction of apoptosis by 

increasing the level of FAS-L on the cell surface.48 In 

addition, ADAM17 cleaves and activates various substrates 

such as receptors of TNF I and II IL-6 participating in 

the inflammation process and, interestingly, it also 

cleaves the ACE2 receptor. Likewise, ADAM17 

activity is increased by internalization of SARS-CoV2-

ACE2 helping viral entry and tissue injury.49 Also, 

increased ADAM17 activity has been evidenced with 

some comorbidities such as heart failure, chronic lung 

inflammation, diabetes, and kidney diseases.50 Therefore, 

the reduction of ACE2 expression on the cell surface 

causes an imbalance in the RAAS system, increasing 

Ang II that induces ADAM17 activity.26 This metalloprotease 

is involved in inflammation by cleaving and activating 

cytokines and cytokine receptors.51 These results suggest 

that the processes of inflammation and apoptosis could 

have an impact on male fertility (Figure 1). 

 

 

 
 
Figure 1. Proposal for the involvement of SARS-CoV-2 infection with the male reproductive system. SARS-CoV-2 enters cells 

through a receptor called angiotensin converting enzyme type 2 (ACE2). The transmembrane protease serine 2 (TMPRSS2), 

contributes to the fusion of the membrane, facilitating the entry of the virus through endocytosis. Internalization of SARS-CoV2-

ACE2 activates a desintegrin and metalloprotease 17 (ADAM17), which participates in inflammation, apoptosis, and cleavage of 

ACE2. The reduction of ACE2 expression on the cell surface causes an imbalance in the RAAS system, increasing the Ang II that 

induces ADAM17 activity. The increase in inflammation and apoptosis could have an impact on male fertility. 

 
SARS-CoV-2 in Male Fertility and Sexual Transmission 

A previous study showed that SARS-CoV infection 

affects the testicles, causing orchitis in humans, showing 

an alteration of the germ cells with few sperms in the 

seminiferous tubules accompanied by leukocyte infiltration 

and abundant IgG in the intestinal tissue.52 Likewise, 

another study showed male gonadal dysfunction in 81 

patients infected with SARS-CoV-2.53 This study 

observed a decrease in the ratio of testosterone/ 

luteinizing hormone, suggesting it as a marker to assess 

testicular deterioration by SARS-CoV-2.54 Also, post-

mortem analysis of testicles from COVID-19 positive 

patients' showed lymphocytic improvement, decrease 

in several Leydig cells, lesions in Sertoli cells and 

seminiferous tubules, with the absence of the virus in 

the testicular tissue.54 

Few studies have focused on evaluating the effects of 

SARS-CoV-2 infection on male reproduction. The existing 

studies have performed semen analysis in patients 

recovered from COVID-19 and mild to moderate 

pneumonia (Table 1). The presence of SARS-CoV-2 in 

semen is still contradictory. The virus's presence was 

evidenced in six COVID-19 positive patients (4 in the 

acute phase and 2 in the recovery phase).55 However, 

several studies have reported the absence of SARS-

CoV-2 in semen and prostate secretion.56-63 In a SARS-

CoV-2 positive patient with moderate symptoms, the 

virus's presence was not found in the semen eight days 

after the symptoms began.62 In another study, patients 

recovered from COVID-19 reported scrotal discomfort 

suggesting viral orchitis. However, no virus was seen 

in the semen a month after patients had been diagnosed 
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with COVID-19.57 Similarly, in another study, investigators 

did not find the presence of SARS-CoV-2 in the semen 

of 12 patients in the recovery phase with severe 

symptoms, nor in two patients in the acute phase of 

COVID-19.59 Complementing this information, in 

another study, this virus was not found in recovered 

patients; most of which had mild complications from 

COVID-19. Another investigation where semen was 

collected from patients during the acute infection stage 

who presented mild discomfort (68%) and moderate 

pneumonia (32%) as a consequence of SARS-CoV-2, 

did not find the virus in the semen too.60 Likewise, 

there was no evidence of SARS-CoV-2 in the semen of 

nine patients with an asymptomatic level and an 

asymptomatic patient.61 Currently, the absence of 

SARS-CoV-2 has been shown in the prostate secretion 

of three COVID-19 positive patients in the nasopharyngeal 

smear, nor seven previously positive at sampling patients. 

However, the semen was not evaluated, and the number 

of patients were limited; therefore, more studies are needed 

to determinate the prostate alteration.63 

Approximately, 27 viruses can cause viremia in the 

human semen.64 Viruses can cross the blood-testicular 

barrier formed by Sertoli cells adjacent to the seminiferous 

tubules' basement membrane, which maintains an 

essential microenvironment with a unique immunity 

for testicular function.64,65 Like SARS-CoV, other 

viruses such as HIV and Epstein-Barr can cause viral 

orchitis,52 germ cell apoptosis, and inflammation. It 

is worth mentioning that germ cell damage causes 

infertility,66 in addition to the possibility of contracting 

sexually transmitted infections.64 Knowledge about the 

presence of SARS-CoV-2 in semen is essential due to 

the clinical and public health implications. There is 

insufficient evidence to confirm the risk of contagion 

of SARS-CoV-2 through semen. In addition to the fact 

that sexual practice is not limited to intercourse, they 

have recommended abstinence from intercourse, oral 

or anal sex in SARS-positive patients, because the 

virus persists in nasal secretions and feces for 10 to 16 

days respectively after the absence of COVID-19 

symptoms.67 

 

Table 1. SARS-CoV-2 in semen  

* Semen collection days after the onset of symptoms. 

** Days of semen collection after confirmatory diagnosis. 

*** Classification of patients according to the severity of the infection. 

**** Negative in prostatic secretion (N=10; 3 positive; 7 recovering patients). 

 

Conclusion 

The repercussions on testicular function and 

infertility caused by the infection of SARS-CoV and 

SARS-CoV-2 is considerable because the functional 

receptor ACE2 and TMPRSS2 are expressed in the 

male reproductive tract. SARS-CoV generates orchitis 

in humans, whose virus invades cells through the same 

pathway. ACE2 is an essential part of SAAR, which is 

involved in fertilization. Furthermore, ADAM17 is a 

SARS-CoV-activated metalloprotease and participates 

in the regulation of spermatogenesis, inflammation, 

and proteolytic cleavage of ACE2. The expression of 

molecules such as ACE2/TMPRSS2/ADAM17 in the 

male reproductive tract denotes that SARS-CoV2 

infection could be involved in spermatogenesis. It is 

essential to analyze the viral load and the conditions 

Ref Patients (N) 

Appearance of 

symptoms* 

(Days) 

Sampling** 

(Days) 

Severity of SARS-

COV2 infection in 

patients 

Confirmation of COVID19 

(Gen amplified by PCR) 

Presence of viral 

RNA in semen 

55 
38 6-16 2-13 -- --- Positive (N=6) 

62 
1 15 8 Mild E y S Negative  

57 
34 - 31 Mild to Moderate ORF1ab y N Negative 

58 
18 

- 43.5-47 
Mild (14)*** 

Moderate (4)*** 
- Negative 

56 
12 

- 14-42 
Mild (92%)*** 

Asymtomatic (8%)*** 
- Negative 

59 
23 

- 32 
Mild (78%)*** 

Moderate (22%) *** 
N y ORF Negative 

60 
16 

- 0-7 
Mild (68.7%)*** 

Moderate (31.3%)*** 
- Negative 

61 
9 

- 7-88 
Mild (8)*** 

Asymptomatic (1)*** 
R, E y N Negative 

 

63 

 

10  

 

11 

 

3-23 

 

-- 

 

N y ORF 

 

Negative**** 
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that make SARS-CoV-2 cause a testicular alteration 

and affect its hormonal regulation. Therefore, it should 

not be underestimated that COVID-19 disease could 

lead to male fertility. 
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