
D

S

A

D

D

A

S

D 

Int J Med Rev 2023 December;10(4): 625-636 

 
INTERNATIONAL JOURNAL OF 

MEDICAL 

REVIEWS 

      Narrative Review 

 doi  10.30491/IJMR.2023.412298.1265 

 

 

Copyright © 2023 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (http:// 

creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 

cited. 

CRISPR-Cas9: The Association between SARS-CoV-2 and 

Neurodegenerative Disorders (NDDs) Occurrence 

Sirvan Abbasbeigi
* 

Master of Cellular and Molecular Biology/Biochemistry Field of Study, Islamic Azad University (IAU), Science and Research 

Branch, Sanandaj, Iran 

 

* Corresponding Author: Sirvan Abbasbeigi, Master of Cellular and Molecular Biology/Biochemistry Field of Study, Islamic Azad 

University (IAU), Science and Research Branch, Sanandaj, Iran. E-mail: nemesis.student@gmail.com  
 

Received August 9, 2023; Accepted November 14, 2023; Online Published December 6, 2023 

 

Introduction 

The Role of COVID-19 in Neurodegenerative Disease 

(NDDs) 

Amyloid proteins are abnormal protein structures that 

can accumulate in various tissues and organs, causing 

damage and dysfunction.1 Amyloid proteins are 

associated with several diseases, such as Alzheimer's, 

diabetes, rheumatoid arthritis, and atherosclerosis.2 

Recently, some studies have suggested that the 

pathogenesis and complications of COVID-19, the 

disease caused by the novel coronavirus SARS-CoV-2, 

can lead to neurological dysfunction.3,4 COVID-19 is a 

respiratory infection that can cause symptoms from 

mild to severe.5 Some of the intense and long-term 

symptoms of COVID-19 include blood clots, neurological 

problems, inflammation, and organ damage.6 The 

mechanisms underlying these symptoms still need to 

be fully understood,7 but some evidence points to the 

involvement of this disease in cognitive deterioration.7,8 

Spike Protein and Immune Response May Induce 

Amyloid Protein Formation 

One hypothesis is that the spike protein of SARS-

CoV-2, which is responsible for binding to and 

entering human cells,9 can induce the formation of 

amyloid proteins in the body.10 The spike protein has 

been shown to interact with several amyloidogenic 

proteins, such as beta-amyloid, alpha-synuclein, tau, 

prion, and TAR DNA-binding protein 43 (TDP-43).11,12 

These interactions may trigger the aggregation of these 

proteins and lead to neurodegeneration and other 

complications.  

Another hypothesis is that the immune response to 

SARS-CoV-2 infection can produce amyloid proteins 

as part of the acute-phase reaction.13,14 The cytokine 

interleukin-6 (IL-6), elevated in COVID-19 patients,15 

can stimulate the synthesis and release of serum 

amyloid A (SAA) from the liver.16 SAA is an 
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inflammatory protein that can form amyloid deposits in 

various tissues and organs, especially in diabetic 

patients.17 The potential link between COVID-19 and 

amyloid proteins has important implications for this 

disease's diagnosis, treatment, and prevention. Further 

research is needed to elucidate the molecular mechanisms 

and clinical consequences of amyloid formation in 

COVID-19 patients. 

 

Overall Structure of the Information Presentation 

This review aims to provide an updated overview of 

the connection between SARS-CoV-2 and neuro- 

degenerative diseases and illustrate the CRISPR-CAS9 

tools as a potential treatment for both complications. In 

this process, a comprehensive literature search was 

conducted in major scientific databases, including 

Google Scholar, PubMed, Web of Science, and Scopus, 

to gather relevant information. The search terms used 

were divided into various related topics, the most 

significant ones stated in the abstract keyword section. 

Results were considered only among the peer-reviewed 

articles published in English between 2020 and 2023; 

however, several pieces were unrestricted due to their 

importance. Ultimately, the discussion of this review 

will provide insights into the potential mechanisms and 

clinical implications of CRISPR techniques in COVID-

19, NDD treatment, and its ongoing or upcoming 

challenges. Moreover, it sheds light on the highlighted 

aspect of this topic that needs additional research and 

experience. 

 

Discussion 

Recognition of Neurodegenerative Disease (Figure 1) 

Defenition of NDDs 

Neurodegenerative disorders are a group of diseases 

that affect the structure and function of neurons in the 

central nervous system, leading to cognitive impairment, 

motor dysfunction, and dementia. Some examples of 

neurodegenerative disorders are Alzheimer's disease, 

Parkinson's disease, Amyotrophic lateral sclerosis, and 

Huntington's disease.18 The neurodegenerative disorders 

recognition mechanism refers to identifying and diagnosing  

 

 
 

Figure 1.  Amyloid fibrillation is a complex process involving various intermediates forming, including liquid-like drops, oligomers, 

protofibrils, and amyloid fibrils. In a healthy brain, amyloid monomers are maintained in a soluble and non-toxic state. However, 

in a damaged brain, these monomers can self-assemble into various intermediates, leading to the formation of amyloid fibrils and, 

ultimately, the appearance of amyloid plaques. Liquid-like drops are considered essential intermediates in the aggregation process, 

allowing for the rapid assembly of amyloid fibrils. Similarly, gel-like or glass-like condensates may also play a role in amyloid 

fibrillation, as they can promote the formation of stable oligomers and protofibrils. Understanding the role of these intermediates in 

amyloid fibrillation could provide valuable insights into the development of therapeutic strategies for neurodegenerative diseases 

associated with amyloid plaques. Created with Biorender.com. 
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these disorders based on their clinical features, 

biomarkers, and pathological findings;19 also, it is 

challenging because of their heterogeneity, complexity, 

and overlap.20 However, recent advances in molecular 

pathology, neuroimaging, and genetics have improved 

the recognition mechanism of neurodegenerative 

disorders by providing more specific and sensitive 

criteria and tools.21,22 

 

Molecular Studies of NDDs 

Molecular pathology studies the molecular alterations 

underlying pathological changes in tissues and cells.21 

The molecular pathology of neurodegenerative disorders 

is based on identifying abnormal protein aggregates 

characteristic of each condition.23 These protein aggregates 

are also known as proteinopathies or proteopathies.24 

For example, Alzheimer's disease is associated with 

amyloid-beta plaques and tau tangles;25,26 Parkinson's 

disease is related to alpha-synuclein Lewy bodies;27 

Amyotrophic lateral sclerosis is associated with TDP-

43 or Superoxide dismutase 1 (SOD1) inclusions;28 and 

Huntington's disease is associated with mutant huntingtin 

aggregates.29 

 

Neuroimaging of NDDs 

Neuroimaging uses various techniques to visualize 

the structure and function of the brain.30 Neuroimaging 

of neurodegenerative disorders can help detect the 

patterns of brain atrophy, hypometabolism, perfusion, 

connectivity, and neurotransmission specific to each 

condition.31 Neuroimaging can also help measure the 

biomarkers that reflect the pathological processes in the 

brain.32,33 For example, positron emission tomography 

(PET) can measure the levels of amyloid-beta or tau in 

Alzheimer's disease;34 magnetic resonance imaging 

(MRI) can measure the iron accumulation or dopaminergic 

loss in Parkinson's disease;35 diffusion tensor imaging 

(DTI) can measure the axonal degeneration or white 

matter integrity in Amyotrophic lateral sclerosis; and 

functional MRI (fMRI) can measure the neural activity 

or network dysfunction in Huntington's disease.36 

 

Genetic Studies of NDDs 

Genetics studies the genes and their variations that 

influence traits and diseases. Genetics of neurodegenerative 

disorders can help identify the genetic factors that 

contribute to these disorders' risk, onset, progression, 

and phenotype.37,38 Genetics can also help understand 

the molecular mechanisms and pathways involved 

in neurodegeneration.39 For example, genome-wide 

association studies (GWAS) can identify common genetic 

variants that are associated with sporadic forms of 

neurodegenerative disorders;40 whole-exome sequencing 

(WES) or whole-genome sequencing (WGS) can 

identify rare genetic variants that cause familial forms 

of neurodegenerative diseases;41,42 transcriptomics or 

epigenomics can identify gene expression or regulation 

changes that affect neurodegeneration.43 

 

Recognition Mechanism of NDDs 

The recognition mechanism of neurodegenerative 

disorders is essential for improving the diagnosis, prognosis, 

treatment, and prevention of these disorders.25,44,45 

However, there are still some limitations and challenges 

for the recognition mechanism of neurodegenerative 

diseases, such as lack of specificity, sensitivity, validity, 

reliability, accessibility, affordability, etc.46,47 Therefore, 

enhanced research and development are needed to 

improve the recognition mechanism of neurodegenerative 

disorders by integrating multiple modalities and sources 

of information. 

 

Viral Pandemic Diagnosis (Figure 2) 

SARS-CoV-2 Defenition 

SARS-CoV-2 outbreak and recognition mechanism 

refers to identifying and understanding the origin, 

transmission, and pathogenesis of the novel coronavirus 

that causes COVID-19.48 The recognition mechanism 

of the SARS-CoV-2 outbreak is essential for developing 

effective diagnostic, preventive, and therapeutic 

strategies to control the pandemic.49 The SARS-CoV-2 

outbreak is a global public health emergency that 

started in late 2019 in Wuhan, China. Based on the 

World Health Organization (WHO) report, It has since 

spread to more than 231 countries and territories, 

infecting over 760 million people and causing nearly 7 

million deaths as of July 2023.50 SARS-CoV-2 belongs 

to the genus Betacoronavirus, including SARS-CoV 

and MERS-CoV, two other highly pathogenic 

coronaviruses that emerged in humans in 2003 and 

2012, respectively.51 

 

Recognition Mechanism of SARS-CoV-2 

The SARS-CoV-2 recognition mechanism involves 

the identification of its origin, transmission, and 

pathogenesis; the source of SARS-CoV-2 is still under 
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Figure 2. Different laboratory methods have been introduced to detect infections like SARS-CoV-2 (COVID-19); this illustration, it 

is displayed two types of determination methods that have been used in the laboratories, such as A) PCR test is widely used for 

detecting viral RNA in various sample types. Sample collection is a critical step in the PCR process, affecting the quality and 

quantity of RNA extracted from the sample. Reverse transcription, which converts RNA to cDNA, is another crucial step. Real-time 

PCR, which measures the amount of amplified cDNA in real-time, allows for quantifying viral RNA. The difficulty rate and 

diagnosis time of PCR tests can vary depending on several factors, including the type of sample collected, the PCR assay's performance, 

and the sample's viral load. PCR tests can diagnose individuals at different stages of infection, including pre-infection, early 

infection, advanced infection, and recovered individuals. The viral RNA detection time in these individuals can vary, with pre-

infection and early infection having lower viral RNA detection rates than advanced and recovered individuals. B) Serological tests 

commonly detect antibodies against a particular pathogen in serum samples. Sample collection is a critical step in the serological 

testing process, as it affects the quality and quantity of antibodies in the sample. Serum separation is an essential step in obtaining 

high-quality serum samples. The ELISA assay is a commonly used serological test that involves the detection of specific antibodies 

using an enzyme-linked immunosorbent assay. Serological tests can diagnose individuals at different stages of infection, including 

pre-infection, early infection, advanced infection, and recovered individuals. The difficulty rate and diagnosis time of serological 

tests can vary depending on several factors, including the type of sample collected, the performance of the ELISA assay, and the 

antibody detection stage. The antibody detection time can also vary depending on the stage of infection, with early infection 

having lower antibody detection rates compared to advanced infection and recovered individuals. Created with Biorender.com. 

 

investigation.52 Still, genomic and phylogenetic analyses 

suggest that it is a zoonotic virus originating from bats 

and may have involved an intermediate animal host 

before jumping to humans.53-55 The transmission of 

SARS-CoV-2 occurs mainly through respiratory 

droplets and aerosols generated by infected individuals 

when they cough, sneeze, or talk.56,57 The virus can 

also be transmitted through contact with contaminated 

surfaces or objects. The pathogenesis of SARS-CoV-2 

involves the interaction of its spike protein with the 

human receptor angiotensin-converting enzyme 2 

(ACE2), which mediates its entry into host cells.58 The  
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Figure 3. Infectious agents, including viral and bacterial pathogens, have been shown to contribute to neurodegenerative diseases 

through direct or immune-mediated mechanisms. Infection can lead to the pro-inflammatory activation of CNS resident immune 

cells, including astrocytes and microglia, resulting in neuronal death. The resulting inflammatory state is thought to play a role in 

the pathogenesis of Alzheimer's disease (AD) and Parkinson's disease (PD), characterized by the accumulation of neurotoxic 

protein aggregates and high levels of pro-inflammatory cytokines. Some pathogens can also directly infect neurons, leading to 

alterations in metabolism, enhanced neuronal excitotoxicity, and enhanced apoptosis, as seen in ALS. Neuroinflammation is a 

central pathophysiology that links mild respiratory COVID-19 to cognitive impairment. SARS-CoV-2 infection can cause an 

excessive peripheral inflammatory response, resulting in immune injury in the CNS. The elevated CSF CCL11 and white matter 

microglial reactivity are associated with multi-lineage cellular dysregulation in the CNS, including impaired hippocampal 

neurogenesis, persistent loss of oligodendrocytes, and myelinated axons. In less severe cases of COVID-19, microglial cells act as 

the innate immune response in the CNS, essential for proper viral clearance. However, the overactivation of microglial cells in 

more severe COVID-19 cases can promote detrimental effects indirectly by activating astrocytes or T lymphocyte-mediated 

neurotoxicity and directly by inducing synapse loss, further contributing to neuronal degeneration in response to viral infection. 

The cytokine storm, primarily produced by microglia, leads to increased BBB permeability and may be responsible for several of 

the neurological symptoms of COVID-19. Created with Biorender.com. 

 

virus then replicates and triggers an immune response 

that can cause inflammation, tissue damage, and organ 

dysfunction.59,60 The severity and outcome of COVID-

19 depend on various factors, such as viral load, host 

genetics, age, comorbidities, and immune status.61 

 

The Importance of Viral Detection 

The recognition mechanism of the SARS-CoV-2 

outbreak is crucial for improving the diagnosis, 

prognosis, treatment, and prevention of COVID-19.62 

Various methods have been developed to detect 

SARS-CoV-2 infection, such as reverse transcription 

polymerase chain reaction (RT-PCR), antigen tests, 

antibody tests, and genomic sequencing.63-65 Several 

vaccines have been authorized or approved for 

preventing COVID-19, such as mRNA, viral vector, 

inactivated, and protein subunit.66-68 Various drugs 

have been tested or repurposed for treating COVID-19, 

https://www.biorender.com/
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such as antivirals, monoclonal antibodies, corticosteroids, 

and immunomodulators.69 The recognition mechanism 

of the SARS-CoV-2 outbreak is still evolving as new 

virus variants emerge and new data become available. 

Therefore, further research and surveillance are needed 

to monitor the pandemic’s dynamics and develop more 

effective interventions to combat SARS-CoV-2. 

 

Neurodegenerative Disease and SARS-COV-2 

Association (Figures 3 & 4) 

Different Likely Pathways between NDs and SARS-

CoV-2 

One possible linkage between neurodegenerative 

diseases and SARS-CoV-2 is the direct virus invasion 

into the brain through the olfactory nerve or the blood-

brain barrier.70 The virus may infect neurons and glial 

cells, causing inflammation, oxidative stress, apoptosis, 

and neuronal dysfunction. The virus may also interact 

with proteins involved in neurodegeneration, such as 

amyloid-beta, tau, alpha-synuclein, TDP-43, and prion 

proteins.71,72 These interactions may trigger or accelerate 

the aggregation and deposition of these proteins in the 

brain, leading to neurodegeneration.4,73 

Another possible linkage between neurodegenerative 

diseases and SARS-CoV-2 is the indirect effect of the 

systemic immune response to the viral infection. The 

cytokine storm in severe COVID-19 cases may cause 

systemic inflammation and endothelial dysfunction,74 

impairing the blood supply and oxygen delivery to the 

brain.75,76 The cytokines may also cross the blood-brain 

 

 
 

Figure 4. Neurodegenerative diseases, such as Alzheimer's disease (AD), are characterized by the loss of neurons and synapses in 

the brain, resulting in cognitive and functional decline. COVID-19, caused by SARS-CoV-2, has also been associated with 

neurological symptoms and cognitive impairment. While there is currently no known treatment linkage between COVID-19 and 

neurodegenerative diseases, research has shown that the CRISPR-Cas9 system has the potential to be used in treating these 

diseases. Specifically, the CRISPR-Cas9 system can introduce site-specific double-strand breaks in the genome using single guide 

RNAs (sgRNAs) that target a specific PAM sequence, allowing for the disruption of genes of interest. The resulting double-strand 

break can be repaired through non-homologous end joining (NHEJ), which may result in nucleotide deletions or additions, or 

through homology-directed repair (HDR), which uses a donor DNA template to repair the break with the correct gene of interest. 

This technology can potentially repair or replace disrupted DNA in the AD brain and potentially in the brains of individuals with 

neurological symptoms resulting from COVID-19. Created with Biorender.com. 
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barrier and activate microglia and astrocytes, causing 

neuroinflammation and neurotoxicity.77 Moreover, 

some cytokines may induce the production of serum 

amyloid A (SAA), an acute-phase protein that can 

form amyloid deposits in various tissues and organs.78 

SAA may also interact with other amyloidogenic 

proteins and contribute to neurodegeneration.79 The 

linkage between neurodegenerative diseases and 

SARS-CoV-2 has important implications for both 

conditions' diagnosis, prognosis, treatment, and 

prevention. Further research is needed to elucidate 

this linkage's molecular mechanisms and clinical 

outcomes 

 

Treatment of Neurodegenerative Disorders through 

CRISPR-Cas9 (Figures 3 & 4) 

Proposed Treatment by CRISPR-Cas9 Technology 

The linkage between CRISPR-Cas9 and neuro- 

degenerative disease treatment is based on this 

genome editing tool's potential to modify the genes 

involved in the pathogenesis of these disorders.80 

Neurodegenerative diseases are characterized by the 

progressive loss of neurons and their functions, 

leading to cognitive impairment, motor dysfunction, 

and dementia. Some examples of neurodegenerative 

diseases are Alzheimer's disease, Parkinson's disease, 

Amyotrophic lateral sclerosis, and Huntington's 

disease.81 CRISPR-Cas9 is a system that can precisely 

target and edit specific DNA sequences in living cells. 

It consists of two components: a guide RNA (gRNA) 

that recognizes and binds to the target DNA sequence 

and a Cas9 enzyme that cuts the DNA at the target 

site.82,83 The cut DNA can then be repaired by the 

cell's mechanisms, resulting in either an insertion or 

deletion of nucleotides (indels) or a replacement of 

nucleotides with a desired sequence (knock-in).84 

 

Animal Models and CRISPR-Cas9 

CRISPR-Cas9 has been used to create animal models 

of neurodegenerative diseases by introducing 

mutations or deletions in the genes that are associated 

with these disorders, such as Amyloid Precursor 

Protein (APP), Presenilin 1 (PSEN1), Presenilin 2 

(PSEN2), Synuclein Alpha (SNCA), Leucine-rich 

repeat kinase 2 (LRRK2), (SOD1), Chromosome 9 

open reading frame 72 (C9orf72), Huntingtin (HTT), 

etc.85-88 These models can help understand these 

genetic alterations' molecular mechanisms and 

phenotypic consequences. CRISPR-Cas9 has also 

been used to explore the therapeutic potential of gene 

editing for neurodegenerative diseases by correcting or 

silencing the disease-causing genes in vitro or in vivo. 

For example, CRISPR-Cas9 has been used to reduce 

the expression of Beta-secretase 1 (BACE1), an 

enzyme that cleaves amyloid precursor protein (APP) 

into amyloid-beta peptides that form plaques in 

Alzheimer's disease.80,89,90 This decreased amyloid-

beta levels and improved cognitive function in mouse 

models of Alzheimer's disease. Similarly, CRISPR-

Cas9 has been used to lower the expression of mutant 

huntingtin (HTT), a protein that forms aggregates in 

Huntington's disease.89,91 This reduced HTT aggregation 

and improved motor function in mouse Huntington’s 

disease 98 mouse models. 

 

Challenge of Delivery 

The delivery of CRISPR-Cas9 to the brain is one of 

the significant challenges for its clinical application in 

neurodegenerative diseases.92 Various strategies have 

been developed to overcome this challenge, such as 

viral vectors, nanoparticles, exosomes, etc. However, 

these methods still need to be improved, such as low 

efficiency, immunogenicity, toxicity, off-target effects, 

etc.93 Therefore, further research is required to 

optimize the safety and efficacy of CRISPR-Cas9 for 

neurodegenerative disease treatment. 

 

Recognition and Medication of Viral Infection via 

CRISPR-Cas9 (Figure 4) 

CRISPR-Cas9 as a Promising Tool 

CRISPR-Cas9 is a genome editing tool that targets 

and modifies specific DNA sequences in living cells. 

It has been used for various purposes, such as creating 

animal models, studying gene function, and 

developing gene therapies.94 CRISPR-Cas9 may also 

be a promising tool to combat viral infections, such as 

COVID-19, by targeting either the viral genome or the 

host factors essential for viral infection.95 Targeting 

the viral genome directly by CRISPR-Cas9 can limit 

virus replication and prevent disease. However, this 

strategy may also induce the formation of viruses to 

escape variants that can evade CRISPR-Cas9 recognition 

and cleavage.96,97 To overcome this problem, multiplexed 

CRISPR-Cas9 systems that target multiple sites of the 

viral genome can inhibit the formation of escape 

mutants and increase the efficiency of viral clearance.98 
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Table 1. An overview of the presented data, a comparison between NDs (in this case, Alzhemer’s and Parkinson’s diseases) and 

SARS-CoV-2 infection supported by risk factors, CRISPR-Cas9 treatment, proposed diagnostic ways, clinical observation, and 

pioneered countries information. 

Example of 

complications  

NDs vs.  

SARS-CoV-2 

infection 

Risk factors 
CRISPR Cas9 

treatment 

Newly 

proposed 

diagnostic 

ways 

Clinical 

observations  

Pioneered 

countries 

Alzheimer's 

disease (AD) 

SARS-CoV-2 can 

infect the CNS via 

different routes 

and cause 

neurological 

symptoms . SARS-

CoV-2 may 

interact with TLR2, 

an innate immune 

receptor that plays 

a role in AD 

pathogenesis. 

SARS-CoV-2 

infection may 

induce or 

accelerate AD 

pathology in 

patients. 

Age, genetic factors 

(e.g., APOE4), 

cardiovascular 

diseases, diabetes, 

hypertension, etc. 

CRISPR/Cas9 

can be used to 

edit genes 

related to AD, 

such as APP, 

PSEN1, 

PSEN2, APOE, 

etc. 

CRISPR/Cas9 

can also be 

used to create 

animal models 

of AD for 

research 

purposes 

Biomarkers 

such as 

amyloid-beta, 

tau, 

neurofilament 

light chain, 

etc., can be 

detected in 

blood or 

cerebrospinal 

fluid samples 

for early 

diagnosis of 

AD. 

Neuroimaging 

techniques 

such as PET 

and MRI can 

also assess 

brain structure 

and function 

in AD. 

A case of rapidly 

progressive AD 

was reported in 

a 75-year-old 

woman who had 

COVID-19 with 

mild respiratory 

symptoms. She 

developed 

cognitive 

impairment, 

memory loss, 

disorientation, 

and behavioral 

changes within 

three months 

after COVID-19. 

USA, 

China, UK, 

Germany, 

Japan, etc 

Parkinson's 

disease (PD) 

SARS-CoV-2 can 

affect dopaminergic 

neurons that are 

involved in PD 

pathogenesis. 

SARS-CoV-2 may 

also interact with 

TLR2, which is 

implicated in PD 

pathology. SARS-

CoV-2 infection 

may worsen PD 

symptoms or 

increase the risk of 

developing PD  

Age, genetic factors 

(e.g., SNCA, 

LRRK2), 

environmental 

toxins (e.g., 

pesticides), 

oxidative stress, 

inflammation, etc 

CRISPR/Cas9 

can edit PD-

related genes, 

such as SNCA, 

LRRK2, GBA, 

PARKIN, etc. 

CRISPR/Cas9 

can also be 

used to create 

animal models 

of PD for 

research 

purposes. 

Biomarkers 

such as alpha-

synuclein, DJ-

1, urate, etc., 

can be 

detected in 

blood, saliva, 

or cerebrospinal 

fluid samples 

to diagnose 

PD. 

Neuroimaging 

techniques 

such as PET 

and MRI can 

also assess 

brain structure 

and function 

in PD. 

No specific 

cases of PD after 

COVID-19 were 

found in the 

web search 

results. However, 

some studies 

have reported 

that COVID-19 

may exacerbate 

motor and non-

motor symptoms 

of PD or trigger 

parkinsonism-

like features in 

some patients  

USA, 

China, UK, 

Germany, 

France, etc 

COVID-19 COVID-19 is 

caused by SARS-

CoV-2 infection 

that affects the 

respiratory system 

and other organs. 

COVID-19 can 

cause symptoms 

such as fever, 

cough, shortness 

of breath, loss of 

taste or smell, etc. 

COVID-19 can 

also cause 

complications such 

as pneumonia, 

acute respiratory 

distress syndrome 

(ARDS), septic 

shock, etc.. 

Age, comorbidities 

(e.g., diabetes, 

cardiovascular 

diseases), 

immunosuppression 

(e.g., cancer), 

obesity, smoking, 

etc.  

CRISPR/Cas9 

can target 

viral genes or 

host genes 

involved in a 

viral entry or 

replication. 

CRISPR/Cas9 

can also be 

used to create 

animal models 

of COVID-19 

for research 

purposes. 

Diagnostic 

tests such as 

PCR, antigen, 

or antibody 

tests can 

detect SARS-

CoV-2 

infection or 

immune 

response. 

Saliva-based 

or rapid tests 

can also be 

used for 

screening. 

A case of 

Creutzfeldt-

Jakob disease 

(CJD) was 

reported in a 67-

year-old man 

who had 

COVID-19 with 

severe respiratory 

failure. He 

developed 

rapidly 

progressive 

dementia, 

myoclonus, 

ataxia, and 

akinetic mutism 

within four 

weeks after 

COVID-19. 

USA, 

China, UK, 

Germany, 

India etc 
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Reduction of Viral Infection 

Targeting the host factors essential for viral infection 

by CRISPR-Cas9 can interfere with the virus entry, 

replication, assembly, or release.99 For example, CRISPR 

-Cas9 can knock out or knock down the expression of 

host receptors, such as ACE2 for SARS-CoV-2, or host 

enzymes, such as Transmembrane serine protease 2 

(TMPRSS2) for SARS-CoV-2. This can reduce the 

susceptibility of host cells to viral infection and 

prevent virus spread.95,100 CRISPR-Cas9 is a versatile 

and powerful tool to combat viral infections, but it also 

faces some challenges and limitations, such as delivery 

efficiency, specificity, safety, immunogenicity, etc. 

Therefore, further research and optimization are needed 

to improve the performance and applicability of CRISPR-

Cas9 for antiviral purposes. 

 

Conclusion 

In conclusion, neurological disorders are characterized 

by chronic dysfunction and degeneration of neuronal 

cells, which various factors, including viral infections, 

may cause. Viruses can affect the central and peripheral 

nervous system, causing direct or indirect damage to 

the neurons or triggering immune responses that may 

lead to pathological signs. Some neurological disorders 

associated with viral infections are Alzheimer's disease, 

Parkinson's disease, Guillain-Barré syndrome, multiple 

sclerosis, and epilepsy. However, the exact mechanisms 

and causal relationships between viral infections and 

neurological disorders are not fully understood and 

require further investigation. Genomic solutions may 

offer new perspectives for diagnosing, preventing, and 

treating these conditions by identifying viral and host 

genetic factors that influence susceptibility, pathogenesis, 

and outcome of the infections. This study tried to cover 

different aspects of these complications in parallel with 

introducing new method tools that can be counted as a 

stable and permanent treatment. Although the significance 

of this treatment method has been proved multiple times, 

its critical risk factor was not revealed comprehensively, 

which displays the treatment consequences over the 

years and generations. 
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