Nano-Aptasensor: Strategies and Categorizing

Document Type : Narrative Review


Nano Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran


The widespread use of nano-aptasensors is seen in various clinical areas, drug discovery, the development of human health, and biological research. Variety in design practices, detection strategies, and areas of application remind us of the need for review, comparison, and classification of this type of sensors. The aptasensors and the attractiveness of using nanotechnology, like a wonderland, have attracted researchers’ attention. Furthermore, the application of these tools (rapid detection, quality control, and drug level assessment in the clinical and paraclinical settings) are of special importance. In this study, aptasensors have been reviewed and classified in terms of type, sensor approach, and transducer type, and in some cases, the advantages, disadvantages, and detectability of sensors have been described. To select, compare, and classify nano-aptasensors in the present research, the author sought to use nanotechnology, aptamer bioreceptor, and application field of these types of sensors, while considering the sensor’s ability. Nanotechnology have the high potential to reduce costs, save time, and increase the accuracy of detecting agents. Diversification in strategy, precedence of studies, and type of nano-processes itself are not considered as advantages; rather the simplicity, accuracy, user-friendliness, accessibility, and competitive cost of the sensor lead to the superiority of the nano-aptasensor.


  1. Lindstrom M, Korkeala H. Laboratory diagnostics of botulism. Clin Microbiol Rev. 2006;19(2):298-314. doi:10.1128/CMR.19.2.298-314.2006.
  2. Song K-M, Lee S, Ban C. Aptamers and their biological applications. Sensors. 2012;12(1):612-31. doi:10.3390/s120100612.
  3. Capek P, Dickerson TJ. Sensing the deadliest toxin: technologies for botulinum neurotoxin detection. Toxins (Basel). 2010;2(1):24- 53. doi:10.3390/toxins2020024.
  4. Campolongo MJ, Tan SJ, Xu J, Luo D. DNA nanomedicine: Engineering DNA as a polymer for therapeutic and diagnostic applications. Adv Drug Deliv Rev. 2010;62(6):606-616. doi:10.1016/j.addr.2010.03.004.
  5. Jayasena SD. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem. 1999;45(9):1628-1650.
  6. Ferreira CSM, Missailidis S. Aptamer-based therapeutics and their potential in radiopharmaceutical design. Braz Arch Biol Technol. 2007;50:63-76. doi:10.1590/S1516-89132007000600008.
  7. Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina. 2002;22(2):143-152. doi:10.1097/00006982-200204000-00002.
  8. Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results. Ophthalmology. 2003;110(5):979-986. doi:10.1016/S0161-6420(03)00085-X.
  9. Lim YC, Kouzani AZ, Duan W. Aptasensors design considerations. Computational intelligence and intelligent systems. Berlin, Heidelberg: Springer; 2009:118-127. doi:10.1007/978-3-642- 04962-0.
  10. Finney DJ. The median lethal dose and its estimation. Arch Toxicol. 1985;56(4):215-218. doi:10.1007/BF00295156.
  11. Pearce LB, Borodic GE, First ER, MacCallum RD. Measurement of botulinum toxin activity: evaluation of the lethality assay. Toxicol Appl Pharmacol. 1994;128(1):69-77. doi:10.1006/taap.1994.1181.
  12. Doellgast GJ, Triscott MX, Beard GA, et al. Sensitive enzyme-linked immunosorbent assay for detection of Clostridium botulinum neurotoxins A, B, and E using signal amplification via enzyme-linked coagulation assay. J Clin Microbiol. 1993;31(9):2402-2409.
  13. Wictome M, Newton K, Jameson K, et al. Development of an in vitro bioassay for Clostridium botulinum type B neurotoxin in foods that is more sensitive than the mouse bioassay. Appl Environ Microbiol. 1999;65(9):3787-3792.
  14. Dhaked RK, Singh MK, Singh P, Gupta P. Botulinum toxin: bioweapon & magic drug. Indian J Med Res. 2010;132:489-503.
  15. Wang X, Zhou J, Yun W, et al. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)3(2+)- doped silica nanoparticle aptasensor via target protein-induced strand displacement. Anal Chim Acta. 2007;598(2):242-248. doi:10.1016/j.aca.2007.07.050.
  16. Ikebukuro K, Kiyohara C, Sode K. Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosens Bioelectron. 2005;20(10):2168-2172. doi:10.1016/j.bios.2004.09.002.
  17. Wu J, Fu Z, Yan F, Ju H. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. TrAC Trends in Analytical Chemistry. 2007;26(7):679-688. doi:10.1016/j.trac.2007.05.007.
  18. Kissinger PT. Biosensors-a perspective. Biosens Bioelectron. 2005;20(12):2512-2516. doi:10.1016/j.bios.2004.10.004.
  19. Schiavo G, Santucci A, Dasgupta BR, et al. Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett. 1993;335(1):99-103. doi:10.1016/0014-5793(93)80448-4.
  20. Gan N, Wang LY, Xu WM, Li TH, Jiang QL. Electrochemical immuno-biosensor for the rapid determination of Nuclear Matrix Protein 22 (NMP22) antigen in urine samples by Co (III) phthlocyanine/Fe3O4/Au collide coimmobilized electrode. Chin J Anal Chem. 2007;35(11):1553-1558. doi:10.1016/S1872-2040(07)60093-0.
  21. Zhang L, Yuan R, Huang X, Chai Y, Cao S. Potentiometric immunosensor based on antiserum of Japanese B encephalitis immobilized in nano-Au/polymerized o-phenylenediamine film. Electrochem commun. 2004;6(12):1222-1226. doi:10.1016/j.elecom.2004.09.020.
  22. Erickson D, Mandal S, Yang AHJ, Cordovez B. Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluid Nanofluidics. 2008;4(1):33- 52. doi:10.1007/s10404-007-0198-8.
  23. Zhang L, Liu Y, Chen T. A mediatorless and label-free amperometric immunosensor for detection of h-IgG. Int J Biol Macromol. 2008;43(2):165-169. doi:10.1016/j.ijbiomac.2008.04.010.
  24. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818-822. doi:10.1038/346818a0.
  25. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505-510. doi:10.1126/ science.2200121.
  26. Oliphant AR, Brandl CJ, Struhl K. Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol Cell Biol. 1989;9(7):2944-2949. doi:10.1128/MCB.9.7.2944.
  27. Song KM, Lee S, Ban C. Aptamers and their biological applications. Sensors (Basel). 2012;12(1):612-631. doi:10.3390/s120100612.
  28. Mascini M. Aptamers and their applications. Anal Bioanal Chem. 2008;390(4):987-988. doi:10.1007/s00216-007-1769-y.
  29. Birch JR, Racher AJ. Antibody production. Adv Drug Deliv Rev. 2006;58(5-6):671-685. doi:10.1016/j.addr.2005.12.006.
  30. Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov. 2010;9(7):537-550. doi:10.1038/nrd3141.
  31. Mairal T, Ozalp VC, Lozano Sanchez P, Mir M, Katakis I, O’Sullivan CK. Aptamers: molecular tools for analytical applications. Anal Bioanal Chem. 2008;390(4):989-1007. doi:10.1007/s00216-007-1346-4.
  32. Song S, Wang L, Li J, Fan C, Zhao J. Aptamer-based biosensors. TrAC Trends in Analytical Chemistry. 2008;27(2):108-117. doi:10.1016/j.trac.2007.12.004.
  33. Nimjee SM, Rusconi CP, Sullenger BA. Aptamers: an emerging class of therapeutics. Annu Rev Med. 2005;56:555-583. doi:10.1146/
  34. Numnuam A, Chumbimuni-Torres KY, Xiang Y, et al. Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Anal Chem. 2008;80(3):707-712. doi:10.1021/ac701910r.
  35. Zhu Y, Chandra P, Song KM, Ban C, Shim YB. Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosens Bioelectron. 2012;36(1):29- 34. doi:10.1016/j.bios.2012.03.034.
  36. Sett A, Das S, Sharma P, Bora U. Aptasensors in Health, Environment and Food Safety Monitoring. Open Journal of Applied Biosensor. 2012;1(2):9-19. doi:10.4236/ojab.2012.12002.
  37. Gronewold TM, Glass S, Quandt E, Famulok M. Monitoring complex formation in the blood-coagulation cascade using aptamer-coated SAW sensors. Biosens Bioelectron. 2005;20(10):2044-2052. doi:10.1016/j.bios.2004.09.007.
  38. Schlensog MD, Gronewold TMA, Tewes M, Famulok M, Quandt E. A Love-wave biosensor using nucleic acids as ligands. Sens Actuators B Chem. 2004;101(3):308-315. doi:10.1016/j.snb.2004.03.015.
  39. Kramer M. Nano–Cantilever Biosensor Design and Analysis. 2006.
  40. Stojanovic MN, de Prada P, Landry DW. Aptamer-Based Folding Fluorescent Sensor for Cocaine. J Am Chem Soc. 2001;123(21):4928-4931. doi:10.1021/ja0038171.
  41. Nutiu R, Li Y. Structure-switching signaling aptamers. J Am Chem Soc. 2003;125(16):4771-4778. doi:10.1021/ja028962o.
  42. Yu Y, Cao Q, Zhou M, Cui H. A novel homogeneous label-free aptasensor for 2,4,6-trinitrotoluene detection based on an assembly strategy of electrochemiluminescent graphene oxide with gold nanoparticles and aptamer. Biosens Bioelectron. 2013;43:137-142. doi:10.1016/j.bios.2012.12.018.
  43. Xu S, Zhang X, Liu W, Sun Y, Zhang H. Reusable light-emitting-diode induced chemiluminescence aptasensor for highly sensitive and selective detection of riboflavin. Biosens Bioelectron. 2013;43:160-164. doi:10.1016/j.bios.2012.12.012.
  44. Cella LN, Sanchez P, Zhong W, Myung NV, Chen W, Mulchandani A. Nano aptasensor for protective antigen toxin of anthrax. Anal Chem. 2010;82(5):2042-2047. doi:10.1021/ac902791q.
  45. Zhu N, Gao H, Xu Q, Lin Y, Su L, Mao L. Sensitive impedimetric DNA biosensor with poly(amidoamine) dendrimer covalently attached onto carbon nanotube electronic transducers as the tether for surface confinement of probe DNA. Biosens Bioelectron. 2010;25(6):1498-1503. doi:10.1016/j.bios.2009.11.006.
  46. Yoon J, Choi N, Ko J, Kim K, Lee S, Choo J. Highly sensitive detection of thrombin using SERS-based magnetic aptasensors. Biosens Bioelectron. 2013;47:62-67. doi:10.1016/j.bios.2013.03.003.
  47. Chiu TC, Huang CC. Aptamer-functionalized nano-biosensors. Sensors (Basel). 2009;9(12):10356-10388. doi:10.3390/s91210356.
  48. Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev. 2005;105(4):1025-1102. doi:10.1021/cr030063a.
  49. Huang YF, Huang KM, Chang HT. Synthesis and characterization of Au core-Au-Ag shell nanoparticles from gold seeds: impacts of glycine concentration and pH. J Colloid Interface Sci. 2006;301(1):145-154. doi:10.1016/j.jcis.2006.04.079.
  50. Wang H, Yang R, Yang L, Tan W. Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano. 2009;3(9):2451-2460. doi:10.1021/nn9006303.
  51. Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chem Rev. 2009;109(5):1948-1998. doi:10.1021/cr030183i.
  52. Lee JS, Ulmann PA, Han MS, Mirkin CA. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett. 2008;8(2):529-533. doi:10.1021/nl0727563.
  53. Carrillo-Carrion C, Simonet BM, Valcarcel M. Determination of TNT explosive based on its selectively interaction with creatinine-capped CdSe/ZnS quantum dots. Anal Chim Acta. 2013;792:93- 100. doi:10.1016/j.aca.2013.07.004.
  54. Bogomolova A, Aldissi M. Real-time aptamer quantum dot fluorescent flow sensor. Biosens Bioelectron. 2011;26(10):4099- 4103. doi:10.1016/j.bios.2011.04.001.
  55. Zhou Z, Du Y, Dong S. DNA-Ag nanoclusters as fluorescence probe for turn-on aptamer sensor of small molecules. Biosens Bioelectron. 2011;28(1):33-37. doi:10.1016/j.bios.2011.06.028.
  56. Yang H, Ji J, Liu Y, Kong J, Liu B. An aptamer-based biosensor for sensitive thrombin detection. Electrochem commun. 2009;11(1):38-40. doi:10.1016/j.elecom.2008.10.024.
  57. Warner MG, Grate JW, Tyler A, et al. Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of botulinum neurotoxin using high-affinity antibodies. Biosens Bioelectron. 2009;25(1):179-184. doi:10.1016/j.bios.2009.06.031.
  58. Liu J, Lee JH, Lu Y. Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal Chem. 2007;79(11):4120-4125. doi:10.1021/ac070055k.
  59. Liu J, Mazumdar D, Lu Y. A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew Chem Int Ed Engl. 2006;45(47):7955- 7959. doi:10.1002/anie.200603106.
  60. Liu J, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed Engl. 2005;45(1):90-94. doi:10.1002/anie.200502589.
  61. Wang J, Zhou HS. Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules. Anal Chem. 2008;80(18):7174-7178. doi:10.1021/ac801281c.
  62. Zhao W, Chiuman W, Lam JC, et al. DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J Am Chem Soc. 2008;130(11):3610-3618. doi:10.1021/ja710241b.
  63. Zhang J, Wang L, Pan D, et al. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small. 2008;4(8):1196-1200. doi:10.1002/smll.200800057.
  64. Li X, Qi H, Shen L, Gao Q, Zhang C. Electrochemical aptasensor for the determination of cocaine incorporating gold nanoparticles modification. Electroanalysis. 2008;20(13):1475-1482. doi:10.1002/elan.200704193.
  65. Zhang CY, Johnson LW. Single quantum-dot-based aptameric nanosensor for cocaine. Anal Chem. 2009;81(8):3051-3055. doi:10.1021/ac802737b.
  66. Zhao W, Chiuman W, Brook MA, Li Y. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. Chembiochem. 2007;8(7):727-731. doi:10.1002/cbic.200700014.
  67. Zhang S, Xia J, Li X. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Anal Chem. 2008;80(22):8382-8388. doi:10.1021/ac800857p.
  68. Freeman R, Li Y, Tel-Vered R, Sharon E, Elbaz J, Willner I. Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. Analyst. 2009;134(4):653-656. doi:10.1039/b822836c.
  69. Chen SJ, Huang YF, Huang CC, Lee KH, Lin ZH, Chang HT. Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosens Bioelectron. 2008;23(11):1749-1753. doi:10.1016/j.bios.2008.02.008.
  70. Wang J, Wang L, Liu X, et al. A Gold Nanoparticle-Based Aptamer Target Binding Readout for ATP Assay. Adv Mater. 2007;19(22):3943-3946. doi:10.1002/adma.200602256.
  71. Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem. 2007;79(2):782-787. doi:10.1021/ac060830g.
  72. Zeng X, Li X, Xing L, et al. Electrodeposition of chitosan-ionic liquid-glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing. Biosens Bioelectron. 2009;24(9):2898-2903. doi:10.1016/j.bios.2009.02.027.
  73. Wei H, Li B, Li J, Wang E, Dong S. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun (Camb). 2007(36):3735- 3737. doi:10.1039/b707642h.
  74. Wang Y, Li D, Ren W, Liu Z, Dong S, Wang E. Ultrasensitive colorimetric detection of protein by aptamer-Au nanoparticles conjugates based on a dot-blot assay. Chem Commun (Camb). 2008(22):2520-2522. doi:10.1039/b801055b.
  75. Jana NR, Ying JY. Synthesis of functionalized Au nanoparticles for protein detection. Adv Mater. 2008;20(3):430-434. doi:10.1002/adma.200701348.
  76. Xu H, Mao X, Zeng Q, Wang S, Kawde AN, Liu G. Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis. Anal Chem. 2009;81(2):669-675. doi:10.1021/ac8020592.
  77. Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307(5709):538-544. doi:10.1126/science.1104274.
  78. Song Y, Zhao C, Ren J, Qu X. Rapid and ultra-sensitive detection of AMP using a fluorescent and magnetic nano-silica sandwich complex. Chem Commun (Camb). 2009(15):1975-1977. doi:10.1039/b818415a.
  79. Huang YF, Chang HT. Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ ionization mass spectrometry. Anal Chem. 2007;79(13):4852- 4859. doi:10.1021/ac070023x.
  80. Lee HS, Kim KS, Kim CJ, Hahn SK, Jo MH. Electrical detection of VEGFs for cancer diagnoses using anti-vascular endotherial growth factor aptamer-modified Si nanowire FETs. Biosens Bioelectron. 2009;24(6):1801-1805. doi:10.1016/j.bios.2008.08.036.
  81. Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosens Bioelectron. 2005;20(12):2424-2434. doi:10.1016/j.bios.2004.11.006.
  82. Cho EJ, Lee JW, Ellington AD. Applications of aptamers as sensors. Annu Rev Anal Chem (Palo Alto Calif). 2009;2:241-264. doi:10.1146/annurev.anchem.1.031207.112851.
  83. Feng K, Sun C, Kang Y, et al. Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement. Electrochem commun. 2008;10(4):531-535. doi:10.1016/j.elecom.2008.01.024.
  84. Chuang YH, Chang YT, Liu KL, Chang HY, Yew TR. Electrical impedimetric biosensors for liver function detection. Biosens Bioelectron. 2011;28(1):368-372. doi:10.1016/j.bios.2011.07.049.
  85. Newman A, Hunter K, Stanbro W. The capacitive affinity sensor: a new biosensor. Bordeaux, France: Proceedings of the Second International Meeting on Chemical Sensors; 1986.