Influence of the Glycemic Index of Pre-exercise Meals in Sports Performance: A Systematic Review

Document Type : Systematic Review


1 Postgraduate Program in Health Sciences (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil

2 Postgraduate Program in Food, Nutrition and Health (PPGANS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil

3 Departament of Nutrition, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil

4 Nutrition and Dietetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil


Introduction: Carbohydrate (CHO) is essential for physical exercise. Some strategies for improving performance are based on the manipulation of the glycemic index (GI) of this nutrient during pre-exercise. Although several studies have been conducted on this subject, the use of low or high GI in a pre-exercise meal to improve performance remains undefined.
Methods: In the present systematic review, the Pubmed (Medline) and Virtual Health Library databases were searched for randomized clinical trials conducted with healthy, physically active adults between 2006 and 2019, in which performance in addition to blood biochemical parameters, substrate utilization, body composition, perception of effort, and gastrointestinal symptoms were evaluated. The identified articles were independently and blindly evaluated by two authors, and any disagreements were resolved by a third investigator.
Results: Five of the sixteen studies reviewed found differences in performance; of these, four were with low GI intervention. Few studies showed modifications in blood lactate and glucose levels beyond fatty free acid oxidation. No differences could be seen in the other parameters. The results as well as the methodologies used were heterogeneous; therefore, there are no clear advantages in determining the specific GI of the pre-exercise meal.
Conclusions: There is no evidence that the pre-exercise meal GI influences performance. The heterogeneity of the studies precludes further conclusions.


  1. Thomas DT, Erdman KA, Burke LM. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med Sci Sports Exerc. 2016;48(3):543-568. doi:10.1249/MSS.0000000000000852.
  2. Burke LM, Hawley JA, Wong SH, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29 Suppl 1:S17-27. doi:10.1080/02640414.2011.585473.
  3. Stellingwerff T, Cox GR. Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations. Appl Physiol Nutr Metab. 2014;39(9):998-1011. doi:10.1139/apnm-2014-0027.
  4. Konig D, Theis S, Kozianowski G, Berg A. Postprandial substrate use in overweight subjects with the metabolic syndrome after isomaltulose (Palatinose) ingestion. Nutrition. 2012;28(6):651- 656. doi:10.1016/j.nut.2011.09.019.
  5. van Can JGP, van Loon LJC, Brouns F, Blaak EE. Reduced glycaemic and insulinaemic responses following trehalose and isomaltulose ingestion: implications for postprandial substrate use in impaired glucose-tolerant subjects. Br J Nutr. 2012;108(7):1210-1217. doi:10.1017/S0007114511006714.
  6. Oosthuyse T, Carstens M, Millen AM. Ingesting Isomaltulose Versus Fructose-Maltodextrin During Prolonged Moderate-Heavy Exercise Increases Fat Oxidation but Impairs Gastrointestinal Comfort and Cycling Performance. Int J Sport Nutr Exerc Metab. 2015;25(5):427-438. doi:10.1123/ijsnem.2014-0178.
  7. Ormsbee MJ, Bach CW, Baur DA. Pre-exercise nutrition: the role of macronutrients, modified starches and supplements on metabolism and endurance performance. Nutrients. 2014;6(5):1782-1808. doi:10.3390/nu6051782.
  8. Febbraio MA, Keenan J, Angus DJ, Campbell SE, Garnham AP. Preexercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use: effect of the glycemic index. J Appl Physiol (1985). 2000;89(5):1845-1851. doi:10.1152/jappl.2000.89.5.1845.
  9. Achten J, Jeukendrup AE. The effect of pre-exercise carbohydrate feedings on the intensity that elicits maximal fat oxidation. J Sports Sci. 2003;21(12):1017-1024. doi:10.1080/02640410310001641403.
  10. Naderi A, de Oliveira EP, Ziegenfuss TN, Willems MT. Timing, Optimal Dose and Intake Duration of Dietary Supplements with Evidence-Based Use in Sports Nutrition. J Exerc Nutrition Biochem. 2016;20(4):1-12. doi:10.20463/jenb.2016.0031.
  11. dos Santos Fontan J, Amadio MB. Use of carbohydrate before physical activity as ergogenic aid: a systematic review. [O uso do carboidrato antes da atividade física como recurso ergogênico: revisão sistemática]. Rev Bras Med Esporte. 2015;21(2):153-157. doi:10.1590/1517-86922015210201933.
  12. Donaldson CM, Perry TL, Rose MC. Glycemic index and endurance performance. Int J Sport Nutr Exerc Metab. 2010;20(2):154-165. doi:10.1123/ijsnem.20.2.154.
  13. O’Reilly J, Wong SH, Chen Y. Glycaemic index, glycaemic load and exercise performance. Sports Med. 2010;40(1):27-39. doi:10.2165/11319660-000000000-00000.
  14. Higgins JPT GS. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 [updated March 2011]. Published 2011.
  15. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100. doi:10.1371/journal.pmed.1000100.
  16. Wu CL, Williams C. A low glycemic index meal before exercise improves endurance running capacity in men. Int J Sport Nutr Exerc Metab. 2006;16(5):510-527. doi:10.1123/ijsnem.16.5.510.
  17. Moore LJ, Midgley AW, Thomas G, Thurlow S, McNaughton LR. The effects of low- and high-glycemic index meals on time trial performance. Int J Sports Physiol Perform. 2009;4(3):331-344. doi:10.1123/ijspp.4.3.331.
  18. Wong SH, Chen YJ, Fung WM, Morris JG. Effect of glycemic index meals on recovery and subsequent endurance capacity. Int J Sports Med. 2009;30(12):898-905. doi:10.1055/s-0029-1237710.
  19. Moore LJ, Midgley AW, Thurlow S, Thomas G, Mc Naughton LR. Effect of the glycaemic index of a pre-exercise meal on metabolism and cycling time trial performance. J Sci Med Sport. 2010;13(1):182-188. doi:10.1016/j.jsams.2008.11.006.
  20. Moore L, Szpalek HM, McNaughton LR. Preexercise high and low glycemic index meals and cycling performance in untrained females: randomized, cross-over trial of efficacy. Res Sports Med. 2013;21(1):24-36. doi:10.1080/15438627.2012.738442.
  21. Konig D, Zdzieblik D, Holz A, Theis S, Gollhofer A. Substrate Utilization and Cycling Performance Following Palatinose Ingestion: A Randomized, Double-Blind, Controlled Trial. Nutrients. 2016;8(7). doi:10.3390/nu8070390.
  22. Bennett CB, Chilibeck PD, Barss T, Vatanparast H, Vandenberg A, Zello GA. Metabolism and performance during extended high-intensity intermittent exercise after consumption of low- and high-glycaemic index pre-exercise meals. Br J Nutr. 2012;108 Suppl 1:S81-90. doi:10.1017/S0007114512000840.
  23. Wong SH, Chan OW, Chen YJ, Hu HL, Lam CW, Chung PK. Effect of preexercise glycemic-index meal on running when CHO-electrolyte solution is consumed during exercise. Int J Sport Nutr Exerc Metab. 2009;19(3):222-242. doi:10.1123/ijsnem.19.3.222.
  24. Hulton AT, Gregson W, Maclaren D, Doran DA. Effects of GI meals on intermittent exercise. Int J Sports Med. 2012;33(9):756-762. doi:10.1055/s-0031-1299754.
  25. Chen YJ, Wong SH, Chan CO, Wong CK, Lam CW, Siu PM. Effects of glycemic index meal and CHO-electrolyte drink on cytokine response and run performance in endurance athletes. J Sci Med Sport. 2009;12(6):697-703. doi:10.1016/j.jsams.2008.05.007.
  26. Kern M, Heslin CJ, Rezende RS. Metabolic and performance effects of raisins versus sports gel as pre-exercise feedings in cyclists. J Strength Cond Res. 2007;21(4):1204-1207. doi:10.1519/R-21226.1.
  27. Little JP, Chilibeck PD, Ciona D, Vandenberg A, Zello GA. The effects of low- and high-glycemic index foods on high-intensity intermittent exercise. Int J Sports Physiol Perform. 2009;4(3):367- 380. doi:10.1123/ijspp.4.3.367.
  28. Little JP, Chilibeck PD, Ciona D, et al. Effect of low- and high-glycemic-index meals on metabolism and performance during high-intensity, intermittent exercise. Int J Sport Nutr Exerc Metab. 2010;20(6):447-456. doi:10.1123/ijsnem.20.6.447.
  29. Jamurtas AZ, Tofas T, Fatouros I, et al. The effects of low and high glycemic index foods on exercise performance and beta-endorphin responses. J Int Soc Sports Nutr. 2011;8:15. doi:10.1186/1550-2783-8-15.
  30. Moore LJ, Midgley A, Vince R, McNaughton LR. The effects of low and high glycemic index 24-h recovery diets on cycling time trial performance. J Sports Med Phys Fitness. 2011;51(2):233-240.
  31. Brown LJ, Midgley AW, Vince RV, Madden LA, McNaughton LR. High versus low glycemic index 3-h recovery diets following glycogen-depleting exercise has no effect on subsequent 5-km cycling time trial performance. J Sci Med Sport. 2013;16(5):450- 454. doi:10.1016/j.jsams.2012.10.006.
  32. Stevenson E, Williams C, McComb G, Oram C. Improved recovery from prolonged exercise following the consumption of low glycemic index carbohydrate meals. Int J Sport Nutr Exerc Metab. 2005;15(4):333-349. doi:10.1123/ijsnem.15.4.333.
  33. McArdle WD, Katch FI, Katch VL. Fisiologia do Exercício - Nutrição, Energia e Desempenho Humano. 8th ed. Guanabara Koogan; 2016.
  34. Lima-Silva AE, Fernandes TC, De-Oliveira FR, Nakamura FY, da Silva Gevaerd M. Muscle glycogen metabolism during exercise: mechanism of regulation. Rev Nutr. 2007;20(4):417-429. doi:10.1590/S1415-52732007000400009.
  35. da Silva AL, Miranda GDF, Liberali R. A influência dos carboidratos antes, durante e após-treinos de alta intensidade. Rev Bras Nutr Esportiva. 2008;2(10):211-224.
  36. de Moraes Bertuzzi RC, Lima-Silva AE, Abad CC, de Oliveira Pires F. Lactate metabolism: a review on bioenergetics and muscle fatigue. [Metabolismo do lactato: uma revisão sobre a bioenergética e a fadiga muscular]. Rev Bras Cineantropom Desempenho Hum. 2009;11(2):226-234. doi:10.5007/1980-0037.2009v11n2p226.
  37. Nalbandian M, Takeda M. Lactate as a Signaling Molecule That Regulates Exercise-Induced Adaptations. Biology (Basel). 2016;5(4). doi:10.3390/biology5040038.
  38. Burdon CA, Spronk I, Cheng HL, O’Connor HT. Effect of glycemic index of a pre-exercise meal on endurance exercise performance: A systematic review and meta-analysis. Sports Med. 2017;47(6):1087-1101. doi:10.1007/s40279-016-0632-8.